Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Goi 4 số tự nhiên liên tiếp lần lượt là x, x+1, x+2, x+3 (\(x\in N\))
Ta sẽ chứng minh \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)là một số chính phương.
Ta có : \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1=\left(x^2+3x\right)\left[\left(x^2+3x\right)+2\right]+1\)
\(=\left(x^2+3x\right)^2+2.\left(x^2+3x\right)+1=\left(x^2+3x+1\right)^2\)là một số chính phương.
Vậy ta có điều phải chứng minh.
Gọi 4 số nguyên chẵn liên kết là 2k;2k+2;2k+4;2k+6
2k(2k+2)(2k+4)(2k+6)+16
=16k(k+1)(k+2)(k+3)+16
\(=16\left[k\left(k+3\right)\left(k+1\right)\left(k+2\right)+1\right]\)
\(=16\left[\left(k^2+3k\right)\left(k^2+3k+2\right)+1\right]\)
\(=16\left(k^2+3k+1\right)^2\)
\(=\left(4k^2+12k+4\right)^2\) là số chính phương
- Gọi số chẵn đầu tiên là 2k ( k \(\in\)N* ). Ta có:
T = 2k ( 2k + 2 )( 2k + 4 )( 2k + 6 ) + 16 = 16k (k + 1)(k + 2)(k + 3) + 16
= 16 ( k(k + 1)(k + 2)(k + 3) + 1 ) = 16( (k2 + 3k)(k2 + 3k + 2) + 1 )
Đặt k2 + 3k là a thì a\(\in\)N*
=> T = 16( a(a + 2) + 1 ) = 16( a2 + 2a + 1) = 42 ( a + 1 )2 = (4(a + 1))2
Vậy T là số chính phương
- Với mọi x ta có (x + a)( x - 2) - 7 = (x + b)(x + c) ------> (1)
nên với x = 2 thì: -7 = (2 + b)(2 + c)
Do b, c \(\in\)Z và vai trò của b và c như nhau nên ta có:
# trường hợp 1: \(\hept{\begin{cases}2+b=-7\\2+c=1\end{cases}\leftrightarrow\hept{\begin{cases}b=-9\\c=-1\end{cases}}}\)Thay vào phương trình (1) ta tìm được a = -8
Nên ta có: (x - 8)(x - 2) -7 = (x - 9)(x - 1)
# trường hợp 2: \(\hept{\begin{cases}2+b=7\\2+c=-1\end{cases}\leftrightarrow\hept{\begin{cases}b=5\\c=-3\end{cases}}}\)Thay vào phương trình (1) ta được a = 4
Nên ta có: ( x + 4)( x - 2) - 7 = (x + 5)( x - 3)
Vậy ( a; b; c) \(\in\){ (-8 ; -9 ; -1 ) ; ( -8 ; -1; -9 ) ; ( 4 ; 5 ; -3) ; (4; -3 ; 5 ) }
Hok tốt................. ^-^
# kiseki no enzeru #
Gọi 5 số đó là : a- 2 ; a - 1 ; a ; a + 1 ; a + 2
Tổng Bình phương 5 số là :
( a - 2 )^ 2 + ( a- 1 )^2+ a^2 + ( a+ 1 )^2 + ( a+ 2 )^2
=> a^2 - 4a + 4 + a^2 - 2a + 1 + a^2 + a^2 + 2a + 1 + a^2 + 4a + 4
= 5a^2 + 10
= 5 ( a^ 2 + 2 ) chia hết cho 5 (1)
Nhưng 5 ( a^2 + 2 ) không chia hết cho 25 (2)
Từ (1) và (2) => Tổng bình phương 5 số ko là số chính phương
Gọi 5 STN liên tiếp là n−2;n−1;n;n+1;n+2
Ta có A=(n−2)2+(n−1)2+n2+(n+1)2+(n+2)2
=5n2+10=5(n2+2)
n2 không tận cùng là 3;8=>n2+2 không tận cùng là 5 hoặc 0=>n2+2 không chia hết cho 5
=>5(n2+2) không chia hết cho 25=> A không phải SCP
a) Gọi 4 số tự nhiên liên tiếp đó là: n ; n+1; n+2; n+3 (n thuộc N)
Ta có: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\left(\cdot\right)\)
Đặt n2 + 3n = t (t thuộc N) thì \(\left(\cdot\right)=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)
Vì n thuộc N nên (n2+3n+1) thuộc N
=> Vậy n(n+1)(n+2)(n+3)+1 là 1 số chính phương
tính giá trị của biểu thức
a, 2x^2(ax^2+2bx+4c)=6x^4-20x^3-8x^2 với mọi x
b, (ax+b)(x^2-cx+2)=x^3+x^2-2 với mọi x
Gọi 4 số tự nhiên chẵn liên tiếp đó lần lượt là x; x+2; x+4; x+6. Ta có:
x(x+2)(x+4)(x+6) + 16
= x(x+6)(x+2)(x+4) + 16
= ( x2 + 6x)( x2+6x+8) + 16 (*)
Đặt x2 + 6x= a. Thay vào (*) ta lại có
(*) = a (a+8) + 16= a2 + 8a + 16= ( a+4)2
Thay a= x2 + 6x vào ta có:
(*)= ( x2 + 6x + 4)2
Do x là số tự nhiên nên \(x^2+6x+4\) cũng là một số tự nhiên.
Vậy tổng của tích 4 số tự nhiên chẵn liên tiếp với 16 là 1 số chính phương
BÀI GIẢI
Gọi 4 số liên tiếp là 2a ; 2a + 2 ; 2a + 4 ; 2a + 6.
Tích của chúng là 2a(2a + 2)(2a + 4)(2a + 6)
Ta có :
A = 2a(2a + 2)(2a + 4)(2a + 6) + 16
A = (4a^2 +4a)(4a^2 + 12a + 8a + 24) + 16
A = (4a^2 +4a)(4a^2 + 20a + 24) + 16
A = 16a^4 + 80a^3 + 96a^2 + 16a^3 + 80a^2 + 96a +16
A = 16a^4 + 96a^3 + 176a^2 + 96a +16
A = 16a^4 + 48a^3 + 16a^2 + 48a^3 + 144a^2 + 48a + 16a^2 + 48a +16
A = (4a^2 + 12a + 4)(4a^2 + 12a + 4)
A = (4a^2 + 12a + 4)^2 (1)
Vì a thuộc N nên 4a^2 + 12a + 4 thuộc N (2)
(1)(2)=> A là số chính phương
=> Đpcm