Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tớ nói với cậu chỗ tin nhắn rồi .... nếu không hiểu thì báo tớ,,,,, tớ ns tiếp cho
Góc BEC=góc BFC=90 độ
=>BCEF LÀ TỨ GIÁC NỘI TIẾP
=>Góc AFE=gócC (1)
Tam giác BNC đồng dạng với tam giác BMC(g.c.g)
=>Góc BNC=góc BMC
=>BCMN là tứ giác nội tiếp
=>Góc ANM=góc AMN=góc C (2)
Từ 1 và 2
Có EF song song với MN và góc ANM=góc AMN
=>EMNF là hình thang cân
Bạn vẽ hình ra nhé! chúc bạn thi tốt!!!
a) xét tam giác AEB và tam giac ÀFC có :góc E= góc F=90 độ
góc A chung
ab=ac( tam giác ABC cân tại A)
suy ra tam giác tg AEB= tg AFC( cạnh huyền-góc nhọn)
b)ta có tg AEB=tg AFC ( cmt)
suy ra AE=AF suy ra tam giác AFE cân tại A suy ra góc ÀFE= góc AEF=(180- góc A)/2 (1)
mà tg ABC cân tại A suy ra góc B = góc C= (180-góc A)/2 (2)
từ (1) và (2) suy ra góc AFE= góc B suy ra FE // BC( hai góc đồng vị)
suy ra tứ giác BCEF là hình thang
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
a) Xét \(\Delta ABE\) và \(\Delta ACF\) có :
AB = AC (\(\Delta ABC\)cân)
\(\widehat{A}\)chung
=> \(\Delta ABE\) = \(\Delta ACF\) (cạnh huyền - góc nhọn)
b) Có CF và BE là 2 đường cao
=> Giao điểm H là trực tâm
=> AH là đường cao của BC
c) Xét tứ giác BFEC , vì \(\Delta ABC\) cân
=> \(\widehat{ABC}=\widehat{ACB}\)
=> Tứ giác BFEC là hình thang cân vì 2 góc kề đáy bằng nhau .
hình tự vẽ
a)\(\Delta ABE=\Delta ACF\)(ch-gn) do: \(\widehat{AEB}=\widehat{AFC}=90^o\);\(\widehat{BAC}\) chung;AB=AC(do \(\Delta ABC\)cân tại A)
=>AE=AF(2 cạnh tương ứng)
b) AE=AF=>\(\Delta EAF\) cân tại A=>\(\widehat{AFE}=\widehat{AEF}=\frac{180^o-\widehat{EAF}}{2}\)(1)
tam giác ABC cân tại A => \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}\)(2)
Từ (1) và (2) => \(\widehat{AFE}=\widehat{AEF}=\)\(\widehat{ABC}=\widehat{ACB}\)
trong đó \(\widehat{AFE}\) đồng vị với \(\widehat{ABC}\) và \(\widehat{AEF}\)đồng vị với \(\widehat{ACB}\)
=> EF//BC => BCEF là hình thang
hình thang BCEF có: \(\widehat{ABC}=\widehat{ACB}\) hay \(\widehat{FBC}=\widehat{ECB}\) => hình thang BCEF cân