Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Góc BEC=góc BFC=90 độ
=>BCEF LÀ TỨ GIÁC NỘI TIẾP
=>Góc AFE=gócC (1)
Tam giác BNC đồng dạng với tam giác BMC(g.c.g)
=>Góc BNC=góc BMC
=>BCMN là tứ giác nội tiếp
=>Góc ANM=góc AMN=góc C (2)
Từ 1 và 2
Có EF song song với MN và góc ANM=góc AMN
=>EMNF là hình thang cân
a) Xét \(\Delta ABE\) và \(\Delta ACF\) có :
AB = AC (\(\Delta ABC\)cân)
\(\widehat{A}\)chung
=> \(\Delta ABE\) = \(\Delta ACF\) (cạnh huyền - góc nhọn)
b) Có CF và BE là 2 đường cao
=> Giao điểm H là trực tâm
=> AH là đường cao của BC
c) Xét tứ giác BFEC , vì \(\Delta ABC\) cân
=> \(\widehat{ABC}=\widehat{ACB}\)
=> Tứ giác BFEC là hình thang cân vì 2 góc kề đáy bằng nhau .
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC