K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

a) Xét \(\Delta ABE\) và \(\Delta ACF\) có :

AB = AC (\(\Delta ABC\)cân)

\(\widehat{A}\)chung

=> \(\Delta ABE\) = \(\Delta ACF\) (cạnh huyền - góc nhọn)

b) Có CF và BE là 2 đường cao 

=> Giao điểm H là trực tâm

=> AH là đường cao của BC

c) Xét tứ giác BFEC , vì \(\Delta ABC\) cân 

=> \(\widehat{ABC}=\widehat{ACB}\)

=> Tứ giác BFEC là hình thang cân vì 2 góc kề đáy bằng nhau .

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

17 tháng 8 2021

Bạn vẽ hình ra nhé! chúc bạn thi tốt!!!

a) xét tam giác AEB và tam giac ÀFC có :góc E= góc F=90 độ

                                                                  góc A chung

                                                                  ab=ac( tam giác ABC cân tại A)

suy ra tam giác tg AEB= tg AFC( cạnh huyền-góc nhọn)

b)ta có tg AEB=tg AFC ( cmt)

suy ra AE=AF suy ra tam giác AFE cân tại A suy ra góc ÀFE= góc AEF=(180- góc A)/2             (1)

mà tg ABC cân tại A suy ra góc B = góc C= (180-góc A)/2       (2)

từ (1) và (2) suy ra góc AFE= góc B suy ra FE // BC( hai góc đồng vị)

suy ra tứ giác BCEF là hình thang

 

17 tháng 8 2021

Thank bn nha

 

Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.a) CM: Tam giác ABE đồng dạng với tam giác ACF.b) CM: Tam giác AFE đồng dạng với tam giác ACB.c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng...
Đọc tiếp

Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.

a) CM: Tam giác ABE đồng dạng với tam giác ACF.

b) CM: Tam giác AFE đồng dạng với tam giác ACB.

c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.

Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng với H và C),từ M vẽ MN vuông góc với AC tại N.

a) CM:tam giác CMN đồng dạng với tam giác CAH và CA×CN=CH×CM

b) CM: tam giác ACM đồng dạng với tam giác HNC.

c) Trên tia đối của tia AC lấy điểm D sao cho AD《AC. Vẽ AE vuông góc với BD tại E. CM:góc BEH=góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. CM: KC×IE=EF×IC.

1
27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;

3 tháng 9 2016

Có: BE là tia pg của ^B(gt)

      CF là tia og của C(gt)

Mà ^B=^C

=> ^ABE=^CBE=^ACF=^BCF

b) Xét ΔABE và ΔACF có:

^A : góc chung

 AB=AC(gt)

^ABE=^ACF(cmt)

=>ΔABE=ΔACF(g..c.g)

=> AE=AF

=>ΔAEF cân tại A

=> \(\widehat{AFE\:}=\frac{180-\widehat{A}}{2}\)               (1)

Có: ΔABC cân tại A(gt)

=> \(\widehat{ABC}=\frac{180-\widehat{A}}{2}\)              (2)

Từ (1)(2) suy ra:

^AFE=^ABC. MÀ hai góc mày ở vị trí đồng vị

=>FE//BC

Mà ^B=^C(gt)

=> tứ giác BFEC là ht cân

3 tháng 9 2016

nhanh v

31 tháng 7 2016

a) ta có tam giác ABC cân tại A

=> góc B= góc C

=> 1/2 góc C= 1/2 góc B

=> ABE=ACF

xét tam giác ABE và tam giác AFC có:

AB=AC(gt)

A(chung)

ABE=ACF(cmt)

=> tam giac ABE= tam giác ACF(g.c.g)

=> AF=AE

=> tam giác AEF cân tại A

b)

ta có góc B= góc C

=> 1/2 góc B=1/2 góc C=>EBC=FCB

theo câu a, ta có tam giác ABE= tam giác ACF(g.c.g)

=> BE=CF

xét tam giác BFC vá tam giác CEB có

BE=CF(tam giác ABE= tam giác ACF)

FCB=ECB(cmt)

BC(chung)

=> tam giác BFC= tam giác CEB(c.g.c0

c)

tam giác AFE cân tại A

=>góc AFE=(180*-A)/2

tam giác ABC cân tại B=>ABC=(180*-A)/2

=> ABC=AFE

=> FE//BC(1)

ta có: FB=AB-AF

          EC=AC-AE

          AB=AC

        AF=AE

=> FB=EC(2)

từ (1)(2)=> tứ giác BFEC là hình thang cân

31 tháng 7 2016

a,Có:Trong tam giác cân,đường phân giác ứng với cạnh đáy đồng thời cũng là đường cao
=>Trong tam giác cân ABC,đường phân giác BE,CF ứng với cạnh đáy đồng thời cũng là đường cao
=>BE là đường cao của tam giác BCA(BE\(\perp\)AC)
     CF là đường cao của tam giác CAB(CF\(\perp\)AB)
Xét tam giác ABE và tam giác ACF có:
     góc AEB=góc AFC=90*(cmt)
     AB=AC(tam giác ABC cân tại A)
     góc A chung
=>tam giác ABE=tam giác ACF(cạnh huyền-góc nhọn)
=>AE=AF(2 cạnh tương ứng)
=>tam giác AEF cân  tại A
b,Có:tam giác ABC cân tại A
=>góc ABC=góc ACB
=>\(\frac{1}{2}ABC=\frac{1}{2}ACB\)
=>góc EBC=góc FCB(BE,CF là tia phân giác của góc B và C)
 Xét tam giác BFC và tam giác CEB có:
   góc CFB =góc BEC=90*(cmt)
   BE=CF(tam giác ABE=tam giác ACF)
   góc EBC=góc FCB(cmt)
=>tam giác BFC=tam giác CEB(cạnh huyền-góc nhọn)
c,Có: tam giác AEF cân tại A(chứng minh câu a)
=>góc AEF=(180*-góc A)/2(1)
Có: tam giác ABC cân tại A(gt)
=>góc ACB=(180*-góc A)/2(2)

Từ (1) và (2)=>góc AEF=góc ACB(=(180*-góc A)/2)
Mà hai góc này ở vị trí đồng vị
=>EF//BC
=>BFEC là hình thang(3)
mà CF=BE(tam giác ABE=tam giác ACF)(4)
Từ (3) và (4)=>Tứ giác BFEC là hình thang cân