![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(125\ge5.5^n\le25\Leftrightarrow5.5^n\le25< 125\)
\(\Rightarrow5.5^n=25\) hoặc \(5\)
Để \(5.5^n=25\Rightarrow5^n=5\Rightarrow n=1\)
Để \(5.5^n=5\Rightarrow5^n=1\Rightarrow n=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(2^2:4\right).2^n=2=32\)
\(\Leftrightarrow\left(2^2:2^2\right).2^n=2^5\)
\(\Leftrightarrow2^{2-2}.2^n=2^5\)
\(\Leftrightarrow2^0.2^n=2^5\)
\(\Leftrightarrow1.2^n=2^5\)
\(\Leftrightarrow2^n=2^5\)
\(\Leftrightarrow n=5\)
Vậy n=5
b) \(27< 3^n< 243\)
\(\Leftrightarrow3^3< 3^n< 3^5\)
\(\Leftrightarrow3< n< 5\)
\(\Rightarrow n=4\)
Vậy n=4
a. \(\left(2^2:4\right).2^n=32\)
\(\Rightarrow\left(4:4\right).2^n=32\)
\(\Rightarrow2.2^n=32\)
\(\Rightarrow2^n=32:1=32=2^5\)
\(\Rightarrow n=5\)
Vậy................
b. \(27< 3^n< 243\)
\(\Leftrightarrow3^3< 3^n< 3^5\)
\(\Rightarrow3< n< 5\)
\(\Rightarrow n=4\)
c. đề bài có j đó sai sai
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì x \(\in N\)và x \(\le5\)
\(\Rightarrow\) x\(\in\){0;1;2;3;4;5}
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(25=5^2\) và \(125=5^3\), do đó \(5^2\le5^n\le5^3\)
\(\Rightarrow5^n=5^3,\) vậy \(n=3,\) hoặc \(5^n=5^2\) vậy \(n=2\)
Nếu \(n=3\) thì \(5^3=5^n>5^2,\) còn thiếu \(n=2\) thì \(5^3>5^n=5^2\)
Vậy n = { 2; 3 }
b) T giải các này:
\(\dfrac{1}{9}.27^n=\dfrac{1}{3^2}.\left(3^3\right)^n=\dfrac{3^{3n}}{3^2}=3^{3n-2}.\) Biểu thức này bằng \(3^n\) nên ta có:
\(3^{3n-2}=3^n,\Rightarrow3n-2=n\), từ đó n = 1
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{n\left(n+2\right)}\)
\(2A=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{n\left(n+2\right)}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(2A=\frac{1}{3}-\frac{1}{n+2}\)
\(2A=\frac{n-1}{3\left(n+2\right)}\)
\(A=\frac{n-1}{6\left(n+2\right)}\)
Ta có : \(\frac{1}{2}=\frac{3\left(n+2\right)}{2\cdot3\left(n+2\right)}=\frac{3n+6}{6\left(n+2\right)}\)
Dễ thấy \(n-1< 3n+6\)
Do đó \(\frac{1}{2}>A\)
1/2×(1/3-1/5+1/5-1/7+.....+1/n-1/n+2)
=> 1/2×(1/3-1/n+2) <1/2
=> 1/3-1/n+2< 1
Vậy 1/3×5+1/5×7+....+1/n×n+2 < 1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}\)
\(A=\left(-1\right)^{2n+n+n+1}\)
\(A=\left(-1\right)^{4n+1}\)
\(B=\left(10000-1^2\right).\left(10000-2^2\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...\left(10000-100^2\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...\left(10000-10000\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...0\left(10000-1000^2\right)\)
\(B=0\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{5^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...0....\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=0\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-10^3\right)}\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-1000\right)}\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...0}\)
\(D=1999^0\)
\(D=1\)