Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{9}{25}\right)^{-x}=\left(\frac{5}{3}\right)^{-6}\)
\(=>\left(\frac{3}{5}\right)^{-2x}=\left(\frac{5}{3}\right)^{-6}\)
\(=>\left(\frac{3}{5}\right)^{-2x}=\left(\frac{3}{5}\right)^6\)
\(=>-2x=6\)
\(=>x=-3\)
câu 2.
\(x^2-xy=-18\)
\(=>x\left(x-y\right)=-18\)
\(=>3x=-18\)
\(=>x=-6\)
1. A = \(\dfrac{3n-7}{n-1}=\dfrac{3n-3}{n-1}+\dfrac{-7}{n-1}=3+\dfrac{-7}{n-1}\)
Tại giá trị \(A\notin Z,3\in Z\)\(\Rightarrow\dfrac{-7}{n-1}\in Z\)\(\Rightarrow n-1\inƯ\left(-7\right)\) với \(x\ne1\) (mẫu sẽ có giá trị là 0 nếu x = 1)
Tại \(n-1=7\)\(\Leftrightarrow n=7+1=8\)
Tại \(n-1=-7\Leftrightarrow n=-7+1=-6\)
Tại \(n-1=1\Leftrightarrow n=1+1=2\)
Tại \(n-1=-1\Leftrightarrow n=-1+1=0\)
2. B = \(\dfrac{4n+1}{2n-3}=\dfrac{4n+6}{2n-3}+\dfrac{-5}{2n-3}=2+\dfrac{-5}{2n-3}\)
Tại giá trị \(B\in Z,2\in Z\)\(\Rightarrow\dfrac{-5}{2n-3}\in Z\)\(\Rightarrow2n-3\inƯ\left(-5\right)\) với \(x\ne\dfrac{3}{2}\)
Tại \(2n-3=5\Leftrightarrow2n=8\Leftrightarrow n=4\)
Tại \(2n-3=-5\Leftrightarrow2n=-2\Leftrightarrow n=-1\)
Tại \(2n-3=1\Leftrightarrow2n=4\Leftrightarrow n=2\)
Tại \(2n-3=-1\Leftrightarrow2n=2\Leftrightarrow n=1\)
c) n2 + 404 = x2 (x thuộc N*)
=> x2 - n2 = 404
=> (x - n)(x + n) = 1.404 = 2.202 = 4.101
Mà x - n và x + n luôn cùng tính chẵn lẻ và x - n < x + n
=> x - n = 2; x + n = 202
=> n = (202 - 2) : 2 = 100
a) Ta có: \(A=\left|x+2009\right|+\left|x-1\right|=\left|x+2009\right|+\left|1-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A\ge\left|x+2009+1-x\right|=\left|2010\right|=2010\)
Dấu " = " xảy ra khi \(x+2009\ge0;1-x\ge0\)
\(\Rightarrow x\ge-2009;x\le1\)
Vậy \(MIN_A=2010\) khi \(-2009\le x\le1\)
b) Giải:
Ta có: \(2n-1⋮n-4\)
\(\Rightarrow2n-8+7⋮n-4\)
\(\Rightarrow2\left(n-4\right)+7⋮n-4\)
\(\Rightarrow7⋮n-4\)
\(\Rightarrow n-4\in\left\{1;-1;7;-7\right\}\)
\(\left[\begin{matrix}n-4=1\\n-4=-1\\n-4=7\\n-4=-7\end{matrix}\right.\Rightarrow\left[\begin{matrix}n=5\\n=3\\n=11\\n=-3\end{matrix}\right.\)
Vậy \(n\in\left\{5;3;11;-3\right\}\)
ĐK:\(x\ge3\)
Để A nhận giá trị nguyên thì \(\sqrt{x-3}\) nguyên và \(\sqrt{x-3}⋮2\) (*)
Do \(\sqrt{x-3}\) nguyên nên đặt \(\sqrt{x-3}=k\ge0\left(k\in\mathbb{Z}\right)\)
Khi đó \(x-3=k^2\Leftrightarrow x=k^2+3\left(1\right)\Rightarrow3\le k^2+3\le30\)
\(\Leftrightarrow0\le k^2\le27.\text{Vì }k\ge0\text{nên suy ra:}0\le k\le\sqrt{27}\)
Lại có \(k\in\mathbb{Z}\) nên \(0\le k\le5\)
Thay (1) và (*) ta có: \(\sqrt{k^2+3-3}⋮2\Leftrightarrow\sqrt{k^2}⋮2\Leftrightarrow k⋮2\left(\text{vì }k\ge0\right)\)
Do đó kết hợp (2) suy ra \(k\in\left\{0;2;4\right\}\)
Thay vào (1) ta thu được \(x=\left\{3;7;19\right\}\)
Vậy ...
P/s: Lâu rồi ko làm toán 7 nên trình bày khá lủng củng và ko chắc về cách làm đâu nhé:)
Sai bỏ qua!
\(A=\frac{\sqrt{x-3}}{2}\)
Để \(A\) nhận giá trị nguyên thì \(\sqrt{x-3}⋮2.\)
Lại có: \(x< 30\)
\(\Rightarrow\sqrt{x}< 6\)
\(\Leftrightarrow\sqrt{x}-3< 3\)
Mà \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x-3}\ge-3\)
\(\Rightarrow\sqrt{x-3}\in\left\{2;0;-2\right\}.\)
\(\Rightarrow\sqrt{x}\in\left\{5;3;1\right\}\)
\(\Rightarrow x\in\left\{25;9;1\right\}.\)
Vậy \(x\in\left\{25;9;1\right\}.\)
Chúc bạn học tốt!
3.
\(2^x=256+2^y\\ \Rightarrow2^x-2^y=256\\ \Rightarrow2^y\left(2^{x-y}-1\right)=2^8\)
\(\Rightarrow2^y;2^{x-y}-1\in U\left(2^8\right)\)
Mà \(2^{x-y}-1\) là số lẻ
\(\Rightarrow2^{x-y}-1=1\\ \Rightarrow\left\{{}\begin{matrix}2^y=2^8\\2^{x-y}=2\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}y=8\\x-y=1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}y=8\\x=9\end{matrix}\right.\)
4.
Gọi d là ƯCLN(2n+5;3n+7)
\(\Rightarrow\left\{{}\begin{matrix}2n+5⋮d\\3n+7⋮d\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}6n+15⋮d\\6n+14⋮d\end{matrix}\right.\\ \Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
=> đpcm
Nguyễn Huy Tú lê thị hương giang Hồng Phúc Nguyễn
Nguyễn Thanh Hằng Akai Haruma Nam Nguyễn Hà Nam Phan Đình
Aki Tsuki
Câu 1:
Nếu \(d=\text{ƯCLN}(a,b)\).
Khi đó đặt \(\left\{\begin{matrix} a=dx\\ b=dy\end{matrix}\right.( \text{x, y nguyên tố cùng nhau})\)
Ta có:
\(a^2+b^2\vdots ab\Leftrightarrow d^2x^2+d^2y^2\vdots d^2xy\)
\(\Leftrightarrow x^2+y^2\vdots xy\)
\(\Rightarrow x^2y+y^3\vdots xy\)
\(\Rightarrow y^3\vdots xy\Rightarrow y^2\vdots x\)
Tương tự: \(x^2\vdots y\)
Mà $x,y$ nguyên tố cùng nhau nên điều trên xảy ra chỉ khi \(x=y=1\)
\(\Rightarrow a=b=d\)
Khi đó: \(A=\frac{a^2+b^2}{2ab}=\frac{d^2+d^2}{2d^2}=\frac{2d^2}{2d^2}=1\)
Câu 2:
Đặt \(\left\{\begin{matrix} x^2+8y=a^2\\ y^2+8x=b^2\end{matrix}\right.\) (trong đó $a,b$ là các số tự nhiên)
Không mất tính tổng quát giả sử \(x\geq y\)
Hiển nhiên \(a^2=x^2+8y>x^2\Rightarrow a> x\) (1)
Mặt khác: \(a^2=x^2+8y\leq x^2+8x< x^2+8x+16\)
\(\Leftrightarrow a^2< (x+4)^2\Leftrightarrow a< x+4\) (2)
Từ (1); (2) suy ra các TH sau:
TH1: \(a=x+1\)
\(\Rightarrow x^2+8y=(x+1)^2\Leftrightarrow 8y=2x+1\)
Vô lý do vế trái chẵn vế phải lẻ.
TH2: \(a=x+2\)
\(\Rightarrow x^2+8y=(x+2)^2\)
\(\Leftrightarrow 8y=4+4x\Leftrightarrow 2y=x+1\)
\(\Rightarrow y^2+8x=y^2+8(2y-1)=b^2\)
\(\Leftrightarrow (y+8)^2-72=b^2\)
\(\Leftrightarrow (y+8-b)(y+8+b)=72\)
Ta thấy \(y+8+b> 0\Rightarrow y+8-b>0\); \(y+8+b> y+8-b\)
\(\Rightarrow y+8-b< \sqrt{72}\Leftrightarrow y+8-b\leq 8\);
\(y+8-b-(y+8+b)=-2b\) chẵn nên $y+8-b$ và $y+8+b$ có cùng tính chẵn lẻ. Do đó ta xét các TH sau:
Nếu: \(\left\{\begin{matrix} y+8-b=2\\ y+8+b=36\end{matrix}\right.\Rightarrow y+8=19\Rightarrow y=11\)
\(\Rightarrow x=21\) (thỏa mãn)
Nếu: \(\left\{\begin{matrix} y+8-b=6\\ y+8+b=12\end{matrix}\right.\Rightarrow y+8=9\Rightarrow y=1\)
\(\Rightarrow x=1\) (thỏa mãn)
TH3: \(a=x+3\)
\(\Rightarrow x^2+8y=(x+3)^2\)
\(\Leftrightarrow 8y=9+6x\)
Vô lý vì vế trái chẵn vế phải lẻ.
Vậy \((x,y)=(21,11); (1;1)\) và các hoán vị.
\(x\in N\) \(x\le5\)
Vậy \(x\in\){ 0; 1; 2; 3; 4; 5}
Vì x \(\in N\)và x \(\le5\)
\(\Rightarrow\) x\(\in\){0;1;2;3;4;5}