\(100< \dfrac{100y+197z}{y+z}=\dfrac{20-84x}{0,22-x}< 197\Rightarrow10,5< 84x< 17,35...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2018

Mysterious Person Nguyễn Thanh Hằng DƯƠNG PHAN KHÁNH DƯƠNG Nguyễn Thị Ngọc Thơ...

13 tháng 11 2018

ta có : \(100< \dfrac{20-84x}{0,22-x}< 197\) --> cái đó

7 tháng 11 2019

b/ \(2^x+2^y+2^z=552\)

\(\Leftrightarrow2^x\left(1+2^{y-x}+2^{z-x}\right)=2^3.69\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\1+2^{y-x}+2^{z-x}=69\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\2^y+2^z=544\left(1\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow2^y\left(1+2^{z-y}\right)=2^5.17\)

\(\Leftrightarrow\hept{\begin{cases}y=5\\1+2^{z-y}=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=5\\z=9\end{cases}}\)

Vậy \(x=3;y=5;z=9\)

7 tháng 11 2019

a/ Dễ thấy: \(z>x,y\)

Xét \(x>y\)

\(\Rightarrow2^x\left(1+2^{y-x}-2^{z-x}\right)=0\)

Loại vì \(2^x\left(1+2^{y-x}-2^{z-x}\right)< 0\)

Tương tự cho trường hợp \(x< y\)

Xét \(x=y\)

\(2^x+2^y=2^z\)

\(\Leftrightarrow2^{x+1}=2^z\)

\(\Leftrightarrow x+1=z\)

Vậy nghiệm là: \(x=y=z-1\)

25 tháng 7 2018

Hỏi đáp Toán

11 tháng 8 2018

\(1.\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}=2-\sqrt{3}+1+\sqrt{3}=3\) \(2a.\sqrt{x^2-2x+1}=7\)

\(x^2-2x+1=49\)

\(x^2-2x-48=0\)

\(\left(x+6\right)\left(x-8\right)=0\)

\(x=8orx=-6\)

\(b.\sqrt{4x-20}-3\sqrt{\dfrac{x-5}{9}}=\sqrt{1-x}\)

\(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\)

\(x-5=1-x\)

\(x=3\left(KTM\right)\)

KL.............

13 tháng 8 2018

a)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

=\(\left|\sqrt{3}-2\right|+\left|1+\sqrt{3}\right|\)

=\(2-\sqrt{3}+1+\sqrt{3}\)

=3

13 tháng 8 2018

Mình giải được câu trên còn mấy câu dưới mình không thấy.

15 tháng 6 2017

Chứng minh bổ đề: \(\dfrac{4x}{3-4x^2}\ge4x^2\)

\(\Leftrightarrow1+4x^3\ge3x\)

\(\Leftrightarrow\dfrac{1}{2}+\dfrac{1}{2}+4x^3\ge3x\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{2}+4x^3\ge3\sqrt[3]{\dfrac{4x^3}{4}}=3x\left(đpcm\right)\)

Áp dụng bổ đề cho các phân thức còn lại và thu lại ta có

\(P\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+xz\right)=3\)

Vậy \(P_{min}=3\)

23 tháng 7 2017

a) \(\sqrt{\dfrac{9x^2}{25}}+\dfrac{1}{5}x\) (x<0)

=\(\dfrac{-3x}{5}+\dfrac{x}{5}\) (vì x<0)

=\(\dfrac{-2x}{5}\)

b)2xy\(\sqrt{\dfrac{9x^2}{y^6}}-\sqrt{\dfrac{49x^2}{y^2}}\) (x<0 , y>0)

=2xy\(\dfrac{-3x}{y^3}+\dfrac{7x}{y}\)(vì x<y<0)

=\(\dfrac{-6x}{y^2}+\dfrac{7xy}{y^2}\)

=\(\dfrac{7xy-6x}{y^2}\)

c) \(\dfrac{1}{ab}\sqrt{a^6\left(a-b\right)^2}\) (a<b<0)

=\(\dfrac{1}{ab}\sqrt{a^6}\sqrt{\left(a-b\right)^2}\)

=\(\dfrac{1}{ab}\left(-a^3\right)\left(b-a\right)\) (vì a<b<0)

=\(\dfrac{\left(a-b\right)a^3}{a-b}\)

=a3

24 tháng 7 2017

Cảm ơn bạn Thu Trang nhiều nhé, sau này có gì giúp đỡ nhau nha. vuivui

AH
Akai Haruma
Giáo viên
25 tháng 12 2018

Lời giải:

Gọi biểu thức vế trái là $A$. Ta có:

\(\frac{A}{2}=\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{100}}\)

\(< \frac{1}{2}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{99}+\sqrt{100}}\)

Mà, thực hiện liên hợp để trục căn thức dưới mẫu thì ta có:

\(\frac{1}{2}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{99}+\sqrt{100}}=\frac{1}{2}+\frac{\sqrt{2}-\sqrt{1}}{1}+\frac{\sqrt{3}-\sqrt{2}}{1}+..+\frac{\sqrt{100}-\sqrt{99}}{1}\)

\(=\frac{1}{2}+\sqrt{100}-1=\frac{19}{2}\)

Do đó:

\(\frac{A}{2}< \frac{19}{2}\Rightarrow A< 19< 20\) (đpcm)