Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Do \(x< y< z\) nên từ PT:
\(2^x+2^y+2^z=2336\)
\(\Leftrightarrow 2^x(1+2^{y-x}+2^{z-x})=2336=2^5.73\) (1)
Do \(x< y< z\Rightarrow y-x>0; z-x>0\)
Do đó \(1+2^{y-x}+2^{z-x}\) lẻ (2)
Từ (1)(2) suy ra \(\left\{\begin{matrix} 2^x=2^5\\ 1+2^{y-x}+2^{z-x}=73\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x=5\\ 2^{y-x}+2^{z-x}=72\end{matrix}\right.\)
\(\Rightarrow 2^{y-5}+2^{z-5}=72\)
\(\Leftrightarrow 2^{y-5}(1+2^{z-y})=72=2^3.3^2\)
Vì \(y< z\Rightarrow z-y>0\Rightarrow 1+2^{z-y}\) lẻ. Mặt khác $2^{y-5}$ chỉ chứa ước nguyên tố là $2$
Do đó: \(\left\{\begin{matrix} 2^{y-5}=2^3\\ 1+2^{z-y}=3^2\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} y=8\\ 2^{z-y}=8\end{matrix}\right.\Rightarrow y=8; z=11\)
Vậy \((x,y,z)=(5,8,11)\)
Giải phương trình nghiệm nguyên
\(x^2^{ }\left(y+z\right)+y^2\left(x+z\right)+z^2\left(x+y\right)=2\)
\(S>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\Rightarrow S>1\)
\(S< \frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}\Rightarrow S< 2\)
\(\Rightarrow1< S< 2\)
b/ \(2^x+2^y+2^z=552\)
\(\Leftrightarrow2^x\left(1+2^{y-x}+2^{z-x}\right)=2^3.69\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\1+2^{y-x}+2^{z-x}=69\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\2^y+2^z=544\left(1\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow2^y\left(1+2^{z-y}\right)=2^5.17\)
\(\Leftrightarrow\hept{\begin{cases}y=5\\1+2^{z-y}=17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=5\\z=9\end{cases}}\)
Vậy \(x=3;y=5;z=9\)
a/ Dễ thấy: \(z>x,y\)
Xét \(x>y\)
\(\Rightarrow2^x\left(1+2^{y-x}-2^{z-x}\right)=0\)
Loại vì \(2^x\left(1+2^{y-x}-2^{z-x}\right)< 0\)
Tương tự cho trường hợp \(x< y\)
Xét \(x=y\)
\(2^x+2^y=2^z\)
\(\Leftrightarrow2^{x+1}=2^z\)
\(\Leftrightarrow x+1=z\)
Vậy nghiệm là: \(x=y=z-1\)