K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2019

b/ \(2^x+2^y+2^z=552\)

\(\Leftrightarrow2^x\left(1+2^{y-x}+2^{z-x}\right)=2^3.69\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\1+2^{y-x}+2^{z-x}=69\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\2^y+2^z=544\left(1\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow2^y\left(1+2^{z-y}\right)=2^5.17\)

\(\Leftrightarrow\hept{\begin{cases}y=5\\1+2^{z-y}=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=5\\z=9\end{cases}}\)

Vậy \(x=3;y=5;z=9\)

7 tháng 11 2019

a/ Dễ thấy: \(z>x,y\)

Xét \(x>y\)

\(\Rightarrow2^x\left(1+2^{y-x}-2^{z-x}\right)=0\)

Loại vì \(2^x\left(1+2^{y-x}-2^{z-x}\right)< 0\)

Tương tự cho trường hợp \(x< y\)

Xét \(x=y\)

\(2^x+2^y=2^z\)

\(\Leftrightarrow2^{x+1}=2^z\)

\(\Leftrightarrow x+1=z\)

Vậy nghiệm là: \(x=y=z-1\)

20 tháng 12 2019

EZ game

AH
Akai Haruma
Giáo viên
17 tháng 1 2018

Lời giải:

Do \(x< y< z\) nên từ PT:
\(2^x+2^y+2^z=2336\)

\(\Leftrightarrow 2^x(1+2^{y-x}+2^{z-x})=2336=2^5.73\) (1)

Do \(x< y< z\Rightarrow y-x>0; z-x>0\)

Do đó \(1+2^{y-x}+2^{z-x}\) lẻ (2)

Từ (1)(2) suy ra \(\left\{\begin{matrix} 2^x=2^5\\ 1+2^{y-x}+2^{z-x}=73\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x=5\\ 2^{y-x}+2^{z-x}=72\end{matrix}\right.\)

\(\Rightarrow 2^{y-5}+2^{z-5}=72\)

\(\Leftrightarrow 2^{y-5}(1+2^{z-y})=72=2^3.3^2\)

Vì \(y< z\Rightarrow z-y>0\Rightarrow 1+2^{z-y}\) lẻ. Mặt khác $2^{y-5}$ chỉ chứa ước nguyên tố là $2$

Do đó: \(\left\{\begin{matrix} 2^{y-5}=2^3\\ 1+2^{z-y}=3^2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} y=8\\ 2^{z-y}=8\end{matrix}\right.\Rightarrow y=8; z=11\)

Vậy \((x,y,z)=(5,8,11)\)

2 tháng 9 2017

gì mà nhiều vậy bạn đăng từng câu thồi mình giải cho

3 tháng 9 2017

\(8^x-37=y^3\)

NV
6 tháng 7 2020

\(S>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\Rightarrow S>1\)

\(S< \frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}\Rightarrow S< 2\)

\(\Rightarrow1< S< 2\)