Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt biểu thức là A ta có:
\(A=\frac{\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+...+\frac{2006}{2007}}{\frac{2006}{1}+\frac{2005}{2}+\frac{2004}{3}+...+\frac{1}{2006}}\)
\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}\right)}{1+\left(1+\frac{2005}{2}\right)+\left(1+\frac{2004}{3}\right)+...+\left(1+\frac{1}{2006}\right)}\)
\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\right)}{1+\frac{2007}{2}+\frac{2007}{3}+...+\frac{2007}{2006}}\)
\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\right)}{2007.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2006}+\frac{1}{2007}\right)}\)
\(\Rightarrow A=\frac{2006}{2007}\)
\(C=\frac{\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+....+\frac{2006}{2007}}{\frac{2006}{1}+\frac{2005}{2}+\frac{2004}{3}+.....+\frac{1}{2006}}\)
Đặt N = \(\frac{2006}{1}+\frac{2005}{2}+\frac{2004}{3}+.....+\frac{1}{2006}\)
\(\Rightarrow N=\frac{1}{2006}+.....+\frac{2004}{3}+\frac{2005}{2}+\frac{2006}{1}\)
\(\Rightarrow N=\left(\frac{1}{2006}+1\right)+.....+\left(\frac{2004}{3}+1\right)+\left(\frac{2005}{2}+1\right)+1\)( Có 2005 nhóm )
\(=\frac{2007}{2006}+....+\frac{2007}{3}+\frac{2007}{2}+\frac{2007}{2007}\)
\(=2007\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2006}+\frac{1}{2007}\right)\)
Đặt M = \(\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+....+\frac{2006}{2007}\)
\(=2006\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2007}\right)\)
Thay N và M vào C , ta có :
\(C=\frac{N}{M}=\frac{2006\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2007}\right)}{2007\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2007}\right)}=\frac{2006}{2007}\)
\(\Rightarrow C=\frac{2006}{2007}\)
Vậy : \(C=\frac{2006}{2007}\)
b) 1/2^2+1/3^2+1/4^2+...+1/100^2
1/2^2<1/1.2=1-1/2
1/3^2<1/2.3=1/2-1/3
.......
1/100^2<1/99.100=1/99-1/100
=> 1/2^2+1/3^2+...+1/100^2<1-1/2+1/2-1/3+...+1/99-1/100
=> 1/2^2+1/3^2+...+1/100^2<1-1/100
=> 1/2^2+1/3^2+..+1/100^2<99/100
=> 1/2^2+1/3^2+...+1/100^2<1