K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2016

b) 1/2^2+1/3^2+1/4^2+...+1/100^2

1/2^2<1/1.2=1-1/2

1/3^2<1/2.3=1/2-1/3

.......

1/100^2<1/99.100=1/99-1/100

=> 1/2^2+1/3^2+...+1/100^2<1-1/2+1/2-1/3+...+1/99-1/100

=> 1/2^2+1/3^2+...+1/100^2<1-1/100

=> 1/2^2+1/3^2+..+1/100^2<99/100

=> 1/2^2+1/3^2+...+1/100^2<1

13 tháng 2 2016

tại sao lại như thế zo ?

19 tháng 5 2019

\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(N< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(N< 1-\frac{1}{100}\)

\(N< \frac{99}{100}< \frac{75}{100}=\frac{3}{4}\)

19 tháng 5 2019

\(a,\)

Để A là phân số thì \(n-2\ne0\Rightarrow n\ne2\)

b, Ta có :

\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)

Mà \(3⋮n+2\Rightarrow n+2\inƯ(3)=\left\{\pm1;\pm3\right\}\)

Tự xét bảng

11 tháng 4 2019

\(1,-\frac{3}{29}+\frac{-7}{29}\le\frac{x}{29}\le-\frac{3}{29}-\frac{5}{29}\)

\(\Rightarrow-\frac{10}{29}\le\frac{x}{29}\le-\frac{8}{29}\Rightarrow-10\le x\le-8\)

\(\Rightarrow x=\left\{-8;-9;-10\right\}\)

\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)

\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

             \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)

\(\Rightarrow2S-S=S=1-\frac{1}{2^{100}}\)

30 tháng 3 2017

Khó dữ vậy!!!!

6 tháng 5 2017

Đợi tí , mạng chậm

8 tháng 7 2021

Giúp tui ik cần gấp

16 tháng 5 2019

#)Giải :

Bài 1 :

\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow N< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow N< 1-\frac{1}{100}\)

\(\Rightarrow N< \frac{99}{100}< \frac{3}{4}\)

\(\Rightarrow N< \frac{3}{4}\)

       #~Will~be~Pens~#

16 tháng 5 2019

Bài 1:

\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Đặt \(S=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

 Ta có: \(\frac{1}{3^2}< \frac{1}{2.3}\)

            \(\frac{1}{4^2}< \frac{1}{3.4}\)

             ...................

            \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow S< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow S< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow S< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

\(\Rightarrow S< \frac{1}{2}\)

\(\Rightarrow N< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)

Bài 2:

a) Để A là phân số \(\Leftrightarrow n-2\ne0\)

                                \(\Leftrightarrow n\ne2\)

Vậy \(n\ne2\)thì A là phân số .

b) Để A là số nguyên 

\(\Leftrightarrow n+1⋮n-2\)

\(\Leftrightarrow n-2+3⋮n-2\)

mà \(n-2⋮n-2\)

\(\Rightarrow3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Tự tìm n 

Bài 3:

áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}< 1\left(m\in N\right)\)

Ta có: \(P=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}\)

\(\Rightarrow P< Q\)

11 tháng 3 2018

nho hon 1