Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để hệ có nghiệm duy nhất thì \(\frac{2}{-5}\ne\frac{3}{1}\)
\(\Leftrightarrow-15\ne2\) ( luôn đúng)
=> hệ luôn có nghiệm duy nhất
Với mọi m, hệ luôn có nghiệm duy nhất nên ta có:
\(\left\{{}\begin{matrix}2x+3y=m\\-5x+y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=m\\-15x+3y=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}17x=m+3\\-5x+y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{m+3}{17}\\y=\frac{5m-2}{17}\end{matrix}\right.\)
Để x > 0, y>0 thì \(\left\{{}\begin{matrix}\frac{m+3}{17}>0\\\frac{5m-2}{17}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+3>0\\5m-2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m>\frac{2}{5}\end{matrix}\right.\)
Kết hợp 2 đk, ta được \(m>\frac{2}{5}\)
=.= hk tốt!!
\(\left\{{}\begin{matrix}y=5-mx\\2x-5+mx=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=5-mx\\x\left(m+2\right)=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=5-mx\\x=\dfrac{3}{m+2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=5-m.\dfrac{3}{m+2}\\x=\dfrac{3}{m+2}\end{matrix}\right.\)
Ta co : xo+yo=1
=> 5-\(\dfrac{3m}{m+2}+\dfrac{3}{m+2}=1\)
=> \(\dfrac{5.\left(m+2\right)-3m+3}{m+2}=1\)
=> 5m+10-3m+3=m+2
=> 2m-m=2-13
=> m=-11
\(\left\{{}\begin{matrix}mx+y=5\left(1\right)\\2x-y=-2\left(2\right)\end{matrix}\right.\)
từ (1) ta có y=5-mx(3)
thế vào (2) ta có 2x-5+mx=-2\(\Leftrightarrow\) (2+m)x=3\(\Leftrightarrow\)x=\(\dfrac{3}{2+m}\)(4)
thế (4) vào (3) ta có
y=5-m\(\dfrac{3}{2+m}\)=\(\dfrac{10+2m}{2+m}\)
vậy hệ có nghiệm duy nhất là(\(\dfrac{3}{2+m}\);\(\dfrac{10+2m}{2+m}\))
mà x+y=1
\(\Rightarrow\)\(\dfrac{3}{2+m}+\dfrac{10+2m}{2+m}=1\)\(\Leftrightarrow\)m=-11
vậy m=-11
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
Lấy pt 1 cộng vế với vế của pt 2 ta được
\(2x+y+x-y=m+2+m\Leftrightarrow3x=2m+2\Leftrightarrow x=\dfrac{2m+2}{3}\)
từ pt 2 ta suy ra \(y=\dfrac{-m+2}{3}\)
Để hpt có nghiệm \(x_0,y_0\) thoả mãn đk đề bài thì \(\dfrac{-m+2}{3}+\dfrac{2m+2}{3}=3\Leftrightarrow\dfrac{m+4}{3}=3\Leftrightarrow m=5\)
Vậy ..........
\(\left\{{}\begin{matrix}x_0-my_0=2-4m\\mx_0+y_0=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0-2=m\left(y_0-4\right)\\y_0-1=m\left(3-x_0\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x_0-2\right)\left(3-x_0\right)=m\left(y_0-4\right)\left(3-x_0\right)\\\left(y_0-1\right)\left(y_0-4\right)=m\left(y_0-4\right)\left(3-x_0\right)\end{matrix}\right.\)
\(\Rightarrow\left(x_0-2\right)\left(3-x_0\right)=\left(y_0-1\right)\left(y_0-4\right)\)
\(\left\{{}\begin{matrix}mx+y=5\\2x-y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m+2\right)x=3\\2x-y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{m+2}\\\frac{6}{m+2}-y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{m+2}\\y=\frac{10+2m}{m+2}\end{matrix}\right.\)
\(\Rightarrow x+y=\frac{3}{m+2}+\frac{10+2m}{m+2}=\frac{13+2m}{m+2}\)
\(\Leftrightarrow\frac{13+2m}{m+2}=1\Leftrightarrow13+2m=m+2\)
\(\Leftrightarrow m=-11\)
1)
\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+3y=12\\2x+3y=m\end{matrix}\right.\)
trừ 2 vế của pt cho nhau ta tìm được
\(\left\{{}\begin{matrix}x=12-m\\y=m-8\end{matrix}\right.\)
để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 12\\m< 8\end{matrix}\right.\Rightarrow}m< 8}\)