Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 1/2<>1/3
nên hệ luôn có nghiệm duy nhất
x+y=2 và 2x+3y=m
=>2x+2y=4 và 2x+3y=m
=>-y=4-m và x+y=2
=>y=m-4 và x=2-y=2-m+4=6-m
x+2y<5
=>6-m+2m-8<5
=>m-2<5
=>m<7
=>Có 6 số nguyên dương thỏa mãn
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
Xét hệ: \(\hept{\begin{cases}mx+y=5\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}3mx+3y=15\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}mx+y=5\\mx=9\left(\cdot\right)\end{cases}}\)
Hệ pt đã cho có nghiệm duy nhất <=> \(\left(\cdot\right)\)có nghiệm duy nhất m \(\ne\)0
Khi đó hệ đã cho có nghiệm duy nhất \(\hept{\begin{cases}x=\frac{9}{m}\\y=-4\end{cases}}\)
Ta có: (2m - 1)x + (m + 1)y = m
Hay (2m - 1).\(\frac{9}{m}\) + -4(m + 1) = m
<=> \(\frac{18m-9}{m}-4m-4-m=0\)
<=> \(\frac{18m-9-4m^2-4m-m^2}{m}=0\)
=> -5m2 + 14m - 9 = 0
<=> 5m2 - 14m + 9 = 0
<=>5m2 - 5m - 9m + 9 = 0
<=> 5m(m - 1) - 9(m - 1) = 0
<=> (5m - 9)(m - 1) = 0 <=> \(\orbr{\begin{cases}m=\frac{9}{5}\\m=1\end{cases}\left(TM\right)}\)
Vậy với m = 9/5 hoặc m = 1 thì thỏa mãn đề bài
\(\left\{{}\begin{matrix}x_0-my_0=2-4m\\mx_0+y_0=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0-2=m\left(y_0-4\right)\\y_0-1=m\left(3-x_0\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x_0-2\right)\left(3-x_0\right)=m\left(y_0-4\right)\left(3-x_0\right)\\\left(y_0-1\right)\left(y_0-4\right)=m\left(y_0-4\right)\left(3-x_0\right)\end{matrix}\right.\)
\(\Rightarrow\left(x_0-2\right)\left(3-x_0\right)=\left(y_0-1\right)\left(y_0-4\right)\)
=( U GAY