Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}y=5-mx\\2x-5+mx=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=5-mx\\x\left(m+2\right)=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=5-mx\\x=\dfrac{3}{m+2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=5-m.\dfrac{3}{m+2}\\x=\dfrac{3}{m+2}\end{matrix}\right.\)
Ta co : xo+yo=1
=> 5-\(\dfrac{3m}{m+2}+\dfrac{3}{m+2}=1\)
=> \(\dfrac{5.\left(m+2\right)-3m+3}{m+2}=1\)
=> 5m+10-3m+3=m+2
=> 2m-m=2-13
=> m=-11
\(\left\{{}\begin{matrix}mx+y=5\left(1\right)\\2x-y=-2\left(2\right)\end{matrix}\right.\)
từ (1) ta có y=5-mx(3)
thế vào (2) ta có 2x-5+mx=-2\(\Leftrightarrow\) (2+m)x=3\(\Leftrightarrow\)x=\(\dfrac{3}{2+m}\)(4)
thế (4) vào (3) ta có
y=5-m\(\dfrac{3}{2+m}\)=\(\dfrac{10+2m}{2+m}\)
vậy hệ có nghiệm duy nhất là(\(\dfrac{3}{2+m}\);\(\dfrac{10+2m}{2+m}\))
mà x+y=1
\(\Rightarrow\)\(\dfrac{3}{2+m}+\dfrac{10+2m}{2+m}=1\)\(\Leftrightarrow\)m=-11
vậy m=-11
\(\left\{{}\begin{matrix}x_0-my_0=2-4m\\mx_0+y_0=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0-2=m\left(y_0-4\right)\\y_0-1=m\left(3-x_0\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x_0-2\right)\left(3-x_0\right)=m\left(y_0-4\right)\left(3-x_0\right)\\\left(y_0-1\right)\left(y_0-4\right)=m\left(y_0-4\right)\left(3-x_0\right)\end{matrix}\right.\)
\(\Rightarrow\left(x_0-2\right)\left(3-x_0\right)=\left(y_0-1\right)\left(y_0-4\right)\)
Lấy pt 1 cộng vế với vế của pt 2 ta được
\(2x+y+x-y=m+2+m\Leftrightarrow3x=2m+2\Leftrightarrow x=\dfrac{2m+2}{3}\)
từ pt 2 ta suy ra \(y=\dfrac{-m+2}{3}\)
Để hpt có nghiệm \(x_0,y_0\) thoả mãn đk đề bài thì \(\dfrac{-m+2}{3}+\dfrac{2m+2}{3}=3\Leftrightarrow\dfrac{m+4}{3}=3\Leftrightarrow m=5\)
Vậy ..........
a/ Bạn tự giải
b/ Hệ tương đương:
\(\left\{{}\begin{matrix}2x+3y=m\\15x-3y=3\end{matrix}\right.\) \(\Rightarrow17x=m+3\Rightarrow x=\frac{m+3}{17}\)
\(\Rightarrow y=5x-1=\frac{5x+15}{17}-1=\frac{5m-2}{17}\)
\(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{m+3}{17}>0\\\frac{5m-2}{17}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m>\frac{2}{5}\end{matrix}\right.\) \(\Rightarrow m>\frac{2}{5}\)
1)
\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+3y=12\\2x+3y=m\end{matrix}\right.\)
trừ 2 vế của pt cho nhau ta tìm được
\(\left\{{}\begin{matrix}x=12-m\\y=m-8\end{matrix}\right.\)
để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 12\\m< 8\end{matrix}\right.\Rightarrow}m< 8}\)
Lời giải:
Khi \(m=-\sqrt{2}\). HPT tương đương:
\(\left\{\begin{matrix} (-\sqrt{2}+1)x-y=3\\ -\sqrt{2}x+y=-\sqrt{2}\end{matrix}\right.\)
Cộng theo vế: \(\Rightarrow (1-2\sqrt{2})x=3-\sqrt{2}\Rightarrow x=\frac{3-\sqrt{2}}{1-2\sqrt{2}}=\frac{1-5\sqrt{2}}{7}\)
\(\Rightarrow y=(m+1)x-3=\frac{(-\sqrt{2}+1)(1-5\sqrt{2})}{7}-3=-\frac{10+6\sqrt{2}}{7}\)
b)
\(\left\{\begin{matrix} (m+1)x-y=3\\ mx+y=m\end{matrix}\right.\Rightarrow \left\{\begin{matrix} y=(m+1)x-3\\ mx+y=3\end{matrix}\right.\)
\(\Rightarrow mx+[(m+1)x-3]=m\)
\(\Leftrightarrow x(2m+1)=m+3\)
Để hệ có bộ nghiệm duy nhất thì $x$ là duy nhất.
Với \(m=-\frac{1}{2}\Rightarrow x.0=\frac{5}{2}\) (vô lý, pt vô nghiệm)
Với \(m\neq -\frac{1}{2}\), pt có nghiệm duy nhất \(x=\frac{m+3}{2m+1}\)
\(\Rightarrow y=(m+1)x-3=\frac{m^2-2m}{2m+1}\)
Do đó: \(x+y=\frac{m^2-m+3}{2m+1}\)
Để \(x+y>0\Leftrightarrow \frac{m^2-m+3}{2m+1}>0\Leftrightarrow \frac{(m-\frac{1}{2})^2+\frac{11}{4}}{2m+1}>0\)
\(\Leftrightarrow 2m+1>0\Leftrightarrow m> \frac{-1}{2}\)
Vậy đk là \(m> \frac{-1}{2}\)
Để hệ có nghiệm duy nhất thì \(\frac{2}{-5}\ne\frac{3}{1}\)
\(\Leftrightarrow-15\ne2\) ( luôn đúng)
=> hệ luôn có nghiệm duy nhất
Với mọi m, hệ luôn có nghiệm duy nhất nên ta có:
\(\left\{{}\begin{matrix}2x+3y=m\\-5x+y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=m\\-15x+3y=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}17x=m+3\\-5x+y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{m+3}{17}\\y=\frac{5m-2}{17}\end{matrix}\right.\)
Để x > 0, y>0 thì \(\left\{{}\begin{matrix}\frac{m+3}{17}>0\\\frac{5m-2}{17}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+3>0\\5m-2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m>\frac{2}{5}\end{matrix}\right.\)
Kết hợp 2 đk, ta được \(m>\frac{2}{5}\)
=.= hk tốt!!