Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a-b}{1+ab}+\frac{b-c}{1+bc}+\frac{c-a}{1+ac}\)
\(=\frac{a-b}{1+ab}+\frac{b-a+a-c}{1+bc}+\frac{c-a}{1+ac}\)
\(=\frac{a-b}{1+ab}+\frac{b-a}{1+bc}+\frac{a-c}{1+bc}+\frac{c-a}{1+ac}\)
\(=\frac{b-a}{1+bc}-\frac{b-a}{1+ab}-\frac{c-a}{1+bc}+\frac{c-a}{1+ac}\)
\(=\left(b-a\right)\left(\frac{1}{1+bc}-\frac{1}{1+ab}\right)-\left(c-a\right)\left(\frac{1}{1+bc}-\frac{1}{1+ac}\right)\)
\(=\left(b-a\right)\left(\frac{1+ab-1-bc}{\left(1+ab\right)\left(1+bc\right)}\right)-\left(c-a\right)\left(\frac{1+ac-1-bc}{\left(1+bc\right)\left(1+ac\right)}\right)\)
\(=\left(b-a\right)\frac{b\left(a-c\right)}{\left(1+ab\right)\left(1+bc\right)}-\left(c-a\right)\frac{c\left(a-b\right)}{\left(1+bc\right)\left(1+ac\right)}\)
Quy đồng:
\(=\frac{\left(b-a\right)b\left(a-c\right)\left(1+ac\right)-\left(c-a\right)c\left(a-b\right)\left(1+ab\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)
\(=\frac{\left(b-a\right)b\left(a-c\right)\left(1+ac\right)-\left(a-c\right)c\left(b-a\right)\left(1+ab\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)
\(=\frac{\left(b-a\right)\left(a-c\right)\left(b\left(1+ac\right)-c\left(1+ab\right)\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)
\(=\frac{\left(b-a\right)\left(a-c\right)\left(b+abc-c-abc\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)
\(=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)là tích của chúng.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có
\(\frac{a-b}{1+ab}=\frac{b-c}{1+bc}=\frac{a-c}{1+ac}\) nên
\(\frac{a-b}{1+ab}+\frac{b-c}{1+bc}+\frac{c-a}{1+ca}=\frac{a-b}{1+ab}+\frac{b-a}{1+bc}+\frac{a-c}{1+bc}+\frac{c-a}{1+ca}\)
\(=\left(a-b\right)\left[\frac{1}{1+ab}-\frac{1}{1+bc}\right]+\left(c-a\right)\left[\frac{1}{1+ac}-\frac{1}{1+bc}\right]\)
\(=\frac{\left(a-b\right)\left(1+bc-1+ab\right)}{\left(1+ab\right)\left(1+bc\right)}+\frac{\left(c-a\right)\left(1+bc-1-ac\right)}{\left(1+ac\right)\left(1+bc\right)}\)
\(=\frac{b\left(c-a\right)\left(a-b\right)}{\left(1+ab\right)\left(1+bc\right)}+\frac{c\left(c-a\right)\left(b-a\right)}{\left(1+ac\right)\left(1+bc\right)}\)
\(=\frac{\left(a-b\right)\left(c-a\right)}{\left(1+bc\right)}\left[\frac{b}{1+ab}-\frac{c}{1+ac}\right]\)
\(=\frac{\left(a-b\right)\left(c-a\right)\left(b-c\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^3+y^3+z^3-3xyz\)
\(=x^3+3x^2y+3xy^2+y^3+z^3-3x^2y-3xy^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tham khảo: Câu hỏi của Nguyễn Thị Nhàn - Toán lớp 8 - Học toán với OnlineMath
Học tốt=)
tth : mẫu nó khác bạn nhé
- mẫu nó là 2bc 2ac 2ab
mẫu mk ko có nhân 2
![](https://rs.olm.vn/images/avt/0.png?1311)
Nhân cả 2 vế với a+b+c
Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0
dễ rồi nhé
b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)
=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)
=>Pmax=3/4 <=> x=y=z=1/3
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
=>\(\frac{1}{a}=-\left(\frac{1}{b}+\frac{1}{c}\right)\)
=>\(\frac{1}{a^2}=-\left(\frac{1}{ab}+\frac{1}{ca}\right)\)
cm tương tự: \(\frac{1}{b^2}=-\left(\frac{1}{ab}+\frac{1}{bc}\right)\)
\(\frac{1}{c^2}=-\left(\frac{1}{ca}+\frac{1}{bc}\right)\)
=> \(N=-\left[bc\left(\frac{1}{ab}+\frac{1}{ca}\right)+ca\left(\frac{1}{ab}+\frac{1}{bc}\right)+ab\left(\frac{1}{ca}+\frac{1}{bc}\right)\right]\)
\(=-\left[\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right]\)
\(=-\left[\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\right]\) (1)
Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
=>\(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}=0\)
=>\(1+\frac{b+c}{a}+1+\frac{a+c}{b}+1+\frac{a+b}{c}=0\)
=>\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=-3\) (2)
Từ (1) và (2) =>N=3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái
\(\left(a-b\right)\left(1+bc\right)\left(1+ca\right)+\left(b-c\right)\left(1+ca\right)\left(1+ab\right)+\left(c-a\right)\left(1+bc\right)\left(1+ab\right)=\left(a-b\right)\left(1+bc+ca+abc^2\right)+\left(b-c\right)\left(1+ab+ca+a^2bc\right)+\left(c-a\right)\left(1+ab+bc+ab^2c\right)=\left(a-b\right)+\left(b-c\right)+\left(c-a\right)+a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)+abc\left(a\left(b-c\right)+b\left(c-a\right)+c\left(a-b\right)\right)=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
\(\frac{\left(a-b\right)\left(1+bc\right)\left(1+ca\right)+\left(b-c\right)\left(1+ab\right)\left(1+ca\right)+\left(c-a\right)\left(1+ab\right)\left(1+bc\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ac\right)}\)
\(=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)}\) suy ra ĐPCM