
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 2
∆ADE có:
AD = AE (gt)
⇒ ∆ADE cân tại A
⇒ ∠ADE = (180⁰ - ∠DAE) : 2 = (180⁰ - ∠BAC) : 2 (1)
∆ABC cân tại A (gt)
⇒ ∠ABC = (180⁰ - ∠BAC) : 2 (2)
Từ (1) và (2) suy ra ∠ADE = ∠ABC
Mà ∠ADE và ∠ABC là hai góc đồng vị
⇒ DE // BC
∆ABC cân tại A (gt)
⇒ ∠ABC = ∠ACB
⇒ ∠DBC = ∠ECB
Tứ giác BDEC có:
DE // BC (cmt)
⇒ BDEC là hình thang
Mà ∠DBC = ∠ECB (cmt)
⇒ BDEC là hình thang cân
Bài 3
a) ABC cân tại A (gt)
AB = AC và ABC = ACB
Xét hai tam giác vuông: ABD và ACE có:
AB = AC (cmt)
A chung
ABD = ACE (cạnh huyền - góc nhọn)
AD = AE
b) ∆ADE có:
AD = AE (gt)
⇒ ∆ADE cân tại A
⇒ ∠AED = (180⁰ - ∠EAD) : 2 = (180⁰ - ∠BAC) : 2 (1)
∆ABC cân tại A (gt)
⇒ ∠ABC = (180⁰ - ∠BAC) : 2 (2)
Từ (1) và (2) suy ra ∠AED = ∠ABC
Mà ∠AED và ∠ABC là hai góc đồng vị
⇒ DE // BC
∆ABC cân tại A (gt)
⇒ ∠ABC = ∠ACB
⇒ ∠EBC = ∠DCB
Tứ giác BEDC có:
DE // BC (cmt)
⇒ BEDC là hình thang
Mà ∠EBC = ∠DCB (cmt)
⇒ BEDC là hình thang cân

a: Ta có: \(AB=\frac{AC}{2}\)
\(AD=DC=\frac{AC}{2}\)
Do đó: AB=AD=DC
Xét tứ giác ABCF có
D là trung điểm chung của AC và BF
=>ABCF là hình bình hành
b: Xét ΔABD có AB=AD
nên ΔABD cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAD
Xét tứ giác AEHG có \(\hat{AEH}=\hat{AGH}=\hat{GAE}=90^0\)
nên AEHG là hình chữ nhật
Hình chữ nhật AEHG có AH là phân giác của góc GAE
nên AEHG là hình vuông
c: ΔABD vuông cân tại A
mà AH là đường cao
nên H là trung điểm của BD
Xét ΔABD có
H là trung điểm của BD
HE//AD
Do đó: E là trung điểm của AB
Xét ΔABD có
H là trung điểm của BD
HG//AB
Do đó: G là trung điểm của AD
AEHG là hình vuông
=>\(S_{AEHG}=AE^2=\left(\frac12AB\right)^2=\frac14AB^2\)
ΔCAB vuông tại A
=>\(S_{CAB}=\frac12\cdot AC\cdot AB=\frac12\cdot2\cdot AB\cdot AB=AB^2\)
Vì ABCF là hình bình hành
nên \(S_{ABCF}=2\cdot S_{CAB}=2\cdot AB^2\)
=>\(\frac{S_{AEHG}}{S_{ABCF}}=\frac14:2=\frac18\)
Bài 7: Cho tam giác vuông△MỘTBC\tam giác ABC△ Một BCvuông tạiMỘTMỘTMỘTvới ( AC = 2ABMỘTC=2MỘTBAC = 2ABMột C=2 A B. Gọi ( D \DDDlà trung điểmMỘTCMáy lạnhMột C.
a) Tìm điểmFFFsao cho (DDDlà trungBFBFBF. Tứ Giác (MỘTBCFABCFMột BCFlà
- VìDDDlàMỘTCMáy lạnhMột CvàBFBFBF, nênMỘTBCFABCFMột BCFlà tứ
- Tam giác vuông tạiMỘTMỘTMỘTvMỘTMỘTMỘTb\(^{}\)nên tứ giácMỘTBCFABCFMột BCFcó
- VậyMỘTBCFABCFMột BCFtôi.
b) GọiHHHlà châMỘTMỘTMỘTxuốngBCtrước Công nguyêntrước Công nguyên. Vẽ ( HE \perpHE⊥MỘTBHE \perp ABANH TA⊥Một BtạiEEE, ( HG \HG⊥MỘTDHG \perp ADH G⊥Một Dtại ( GGGG. Chứng minh tứ giácMỘTEHGAEHGA E H Gtôi
- HE⊥MỘTBHE \perp ABANH TA⊥Một Bvà ( HG \perp ADHG⊥MỘTDHG \perp ADH G⊥Một Dnên các góc tạiEEEvàGGGđ\(^{}\).
- MỘTH⊥BCAH \perp BCMột H⊥trước Công nguyênnên góc tại ( HHHHvuông.
- Góc tạiMỘTMỘTMỘTvuông vì tam
- Do đó,MỘTEHGAEHGA E H Gcó bốn gMỘTEHGAEHGA E H Glà hình.
c) Chứng
\(\frac{S_{A E H G}}{S_{A B C F}} = \frac{1}{8}\)
- Hình chữ nhậtMỘTBCFABCFMột BCFlà:
\(S_{A B C F} = A B \times A C = x \times 2 x = 2 x^{2}\)
- Đường caoMỘTHÀMột Htrong tam giác vuông được
\(A H = \frac{A B \times A C}{B C} = \frac{x \times 2 x}{\sqrt{x^{2} + \left(\right. 2 x \left.\right)^{2}}} = \frac{2 x^{2}}{x \sqrt{5}} = \frac{2 x}{\sqrt{5}}\)
- Diện tích hình vuôngMỘTEHGAEHGA E H Glà:
\(S_{A E H G} = A H^{2} = \left(\left(\right. \frac{2 x}{\sqrt{5}} \left.\right)\right)^{2} = \frac{4 x^{2}}{5}\)
- Tỉ số d
\(\frac{S_{A E H G}}{S_{A B C F}} = \frac{\frac{4 x^{2}}{5}}{2 x^{2}} = \frac{4}{5} \times \frac{1}{2} = \frac{2}{5}\)

a: Xét ΔMNP và ΔKPN có
\(\hat{MNP}=\hat{KPN}\) (hai góc so le trong, MN//PK)
NP chung
\(\hat{MPN}=\hat{KNP}\) (hai góc so le trong, MP//NK)
Do đó: ΔMNP=ΔKPN
=>MN=KP; MP=KN
ta có: MP=KN
MP=NQ
Do đó: NK=NQ
=>ΔNKQ cân tại N
b: Ta có: ΔNKQ cân tại N
=>\(\hat{NKQ}=\hat{NQK}\)
mà \(\hat{NKQ}=\hat{MPQ}\) (hai góc đồng vị, MP//NK)
nên \(\hat{MPQ}=\hat{NQP}\)
Xét ΔMQP và ΔNPQ có
MP=NQ
\(\hat{MPQ}=\hat{NQP}\)
PQ chung
Do đó: ΔMQP=ΔNPQ
c: ΔMQP=ΔNPQ
=>\(\hat{MQP}=\hat{NPQ}\)
=>MNPQ là hình thang cân

Bằng hình vẽ này thì câu hỏi ko trả lời được đâu em.
Hai tam giác vẽ chẳng chính xác gì hết, giao điểm cũng ko rõ ràng vị trí.
diện tích tứ giác
S.ABCD=S.ACD=S.ABC
54=17+S.ABC
S.ABC=54-17=37
TAM GIÁC ABC CÂN TẠI A(DO AB=AC)
CD VUÔNG GÓC VỚI BC
=>S.ABD=37 CM