K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 giờ trước (10:02)

a: Ta có: \(AB=\frac{AC}{2}\)

\(AD=DC=\frac{AC}{2}\)

Do đó: AB=AD=DC

Xét tứ giác ABCF có

D là trung điểm chung của AC và BF

=>ABCF là hình bình hành

b: Xét ΔABD có AB=AD
nên ΔABD cân tại A

mà AH là đường cao

nên AH là phân giác của góc BAD

Xét tứ giác AEHG có \(\hat{AEH}=\hat{AGH}=\hat{GAE}=90^0\)

nên AEHG là hình chữ nhật

Hình chữ nhật AEHG có AH là phân giác của góc GAE
nên AEHG là hình vuông

c: ΔABD vuông cân tại A

mà AH là đường cao

nên H là trung điểm của BD

Xét ΔABD có

H là trung điểm của BD

HE//AD
Do đó: E là trung điểm của AB

Xét ΔABD có

H là trung điểm của BD

HG//AB

Do đó: G là trung điểm của AD

AEHG là hình vuông

=>\(S_{AEHG}=AE^2=\left(\frac12AB\right)^2=\frac14AB^2\)

ΔCAB vuông tại A

=>\(S_{CAB}=\frac12\cdot AC\cdot AB=\frac12\cdot2\cdot AB\cdot AB=AB^2\)

Vì ABCF là hình bình hành

nên \(S_{ABCF}=2\cdot S_{CAB}=2\cdot AB^2\)

=>\(\frac{S_{AEHG}}{S_{ABCF}}=\frac14:2=\frac18\)

11 giờ trước (10:26)

Bài 7: Cho tam giác vuông△MỘTBC\tam giác ABC△ Một BCvuông tạiMỘTMỘTMỘTvới ( AC = 2ABMỘTC=2MỘTBAC = 2ABMột C=2 A B. Gọi ( D \DDDlà trung điểmMỘTCMáy lạnhMột C.

a) Tìm điểmFFFsao cho (DDDlà trungBFBFBF. Tứ Giác (MỘTBCFABCFMột BCFlà

  • VìDDDlàMỘTCMáy lạnhMột CvàBFBFBF, nênMỘTBCFABCFMột BCFlà tứ
  • Tam giác vuông tạiMỘTMỘTMỘTvMỘTMỘTMỘTb\(^{}\)nên tứ giácMỘTBCFABCFMột BCFcó
  • VậyMỘTBCFABCFMột BCFtôi.

b) GọiHHHlà châMỘTMỘTMỘTxuốngBCtrước Công nguyêntrước Công nguyên. Vẽ ( HE \perpHE⊥MỘTBHE \perp ABANH TA⊥Một BtạiEEE, ( HG \HG⊥MỘTDHG \perp ADH G⊥Một Dtại ( GGGG. Chứng minh tứ giácMỘTEHGAEHGA E H Gtôi

  • HE⊥MỘTBHE \perp ABANH TA⊥Một Bvà ( HG \perp ADHG⊥MỘTDHG \perp ADH G⊥Một Dnên các góc tạiEEEvàGGGđ\(^{}\).
  • MỘTH⊥BCAH \perp BCMột H⊥trước Công nguyênnên góc tại ( HHHHvuông.
  • Góc tạiMỘTMỘTMỘTvuông vì tam
  • Do đó,MỘTEHGAEHGA E H Gcó bốn gMỘTEHGAEHGA E H Glà hình.

c) Chứng

\(\frac{S_{A E H G}}{S_{A B C F}} = \frac{1}{8}\)

  • Hình chữ nhậtMỘTBCFABCFMột BCFlà:

\(S_{A B C F} = A B \times A C = x \times 2 x = 2 x^{2}\)

  • Đường caoMỘTHÀMột Htrong tam giác vuông được

\(A H = \frac{A B \times A C}{B C} = \frac{x \times 2 x}{\sqrt{x^{2} + \left(\right. 2 x \left.\right)^{2}}} = \frac{2 x^{2}}{x \sqrt{5}} = \frac{2 x}{\sqrt{5}}\)

  • Diện tích hình vuôngMỘTEHGAEHGA E H Glà:

\(S_{A E H G} = A H^{2} = \left(\left(\right. \frac{2 x}{\sqrt{5}} \left.\right)\right)^{2} = \frac{4 x^{2}}{5}\)

  • Tỉ số d

\(\frac{S_{A E H G}}{S_{A B C F}} = \frac{\frac{4 x^{2}}{5}}{2 x^{2}} = \frac{4}{5} \times \frac{1}{2} = \frac{2}{5}\)

12 giờ trước (10:10)

diện tích tứ giác

S.ABCD=S.ACD=S.ABC

54=17+S.ABC

S.ABC=54-17=37

TAM GIÁC ABC CÂN TẠI A(DO AB=AC)

CD VUÔNG GÓC VỚI BC

=>S.ABD=37 CM

17 tháng 9

cau 1 2 3 4 5


17 tháng 9

giup minh voi


a: Xét tứ giác AEDF có \(\hat{AED}=\hat{AFD}=\hat{FAE}=90^0\)

nên AEDF là hình chữ nhật

b: AEDF là hình chữ nhật

=>DF//AE và DF=AE

DF//AE

=>GF//AE
Ta có DF=AE

DF=FG

Do đó: GF=AE

Xét tứ giác AEFG có

AE//FG

AE=FG

Do đó: AEFG là hình bình hành

c: AEDF là hình chữ nhật

=>AD cắt EF tại trung điểm của mỗi đường

mà H là trung điểm của AD

nên H là trung điểm của FE

AEDF là hình chữ nhật

=>AD=FE
\(HA=HD=\frac{AD}{2};HF=HE=\frac{EF}{2}\)

nên \(HA=HD=HF=HE=\frac{EF}{2}=\frac{AD}{2}\)

HI=HF

\(HF=HA\)

\(HA=\frac{AD}{2}\)

Do đó: \(IH=\frac{AD}{2}\)

Xét ΔIAD có

IH là đường trung tuyến

\(IH=\frac{AD}{2}\)

Do đó: ΔIAD vuông tại I

=>IA⊥ID

a: Gọi M,N lần lượt là trung điểm của AB,CD
Ta có: ΔIAB vuông cân tại I

=>IA=IB; \(\hat{AIB}=90^0\) ; \(\hat{IAB}=\hat{IBA}=45^0\)

ΔKDC vuông cân tại K

=>KD=KC; \(\hat{DKC}=90^0;\hat{KDC}=\hat{KCD}=45^0\)

ΔIAB vuông tại I

=>\(IA^2+IB^2=AB^2\)

=>\(2\cdot IA^2=CD^2\left(1\right)\)

ΔKCD vuông tại K

=>\(KD^2+KC^2=DC^2\)

=>\(2\cdot KD^2=CD^2\left(2\right)\)

Từ (1),(2) suy ra IA=KD

mà IA=IB và KD=KC

nên IA=IB=KD=KC

Ta có: ΔIAB cân tại I

mà IM là đường trung tuyến

nên IM⊥AB tại M

Ta có: \(AM=MB=\frac{AB}{2}\)

\(DN=NC=\frac{DC}{2}\)

mà AB=CD
nên AM=MB=DN=NC

Xét tứ giác AMND có

AM//ND

AM=ND

Do đó: AMND là hình bình hành

Hình bình hành AMND có \(\hat{DAM}=90^0\)

nên AMND là hình chữ nhật

=>AM⊥MN

=>MN⊥AB

ΔKDC cân tại K

mà KN là đường trung tuyến

nên KN⊥DC tại N

mà DC//AB

nên KN⊥AB

mà MN⊥AB

và KN,MN có điểm chung là N

nên K,N,M thẳng hàng(1)

Ta có: IM⊥AB

MN⊥AB

mà IM,MN có điểm chung là M

nên I,M,N thẳng hàng(2)

Từ (1),(2) suy ra K,N,M,I thẳng hàng

Xét ΔEIK có AD//IK

nên \(\frac{EA}{AI}=\frac{ED}{DK}\)

mà AI=DK

nên EA=ED

Ta có: EA+AI=EI

ED+DK=EK

mà EA=ED và AI=DK

nên EI=EK

=>E nằm trên đường trung trực của IK(3)

Xét ΔFKI có BC//KI

nên \(\frac{FB}{BI}=\frac{FC}{CK}\)

mà BI=CK

nên FB=FC

Ta có: FB+BI=FI

FC+CK=FK
mà FB=FC và BI=CK

nên FI=FK

=>F nằm trên đường trung trực của IK(4)

từ (3),(4) suy ra FE là đường trung trực của IK

=>FE⊥IK

mà IK⊥CD

nên FE//CD

b: Xét ΔKEF có DC//EF
nên \(\frac{KD}{DE}=\frac{KC}{CF}\)

mà KD=KC

nên DE=CF

Ta có: KD+DE=KE

KC+CF=KF

mà KD=KC và DE=CF

nên KE=KF

=>IE=EK=KF=FI

=>IEKF là hình thoi

Hình thoi IEKF có \(\hat{EIF}=90^0\)

nên IEKF là hình vuông

a: ABCD là hình vuông

=>AB=BC=CD=DA và AB//CD và AD//BC

Ta có:AB//CD
=>AB//CE

Xét tứ giác ABEC có

AB//EC

AC//BE

Do đó: ABEC là hình bình hành

=>AC=BE

mà AC=BD(ABCD là hình vuông)

nên BD=BE

=>ΔBDE cân tại B

Ta có: ABCD là hình vuông

=>AC⊥BD

mà AC//BE

nên BD⊥BE tại B

=>\(\hat{DBE}=90^0\)

ABCD là hình vuông

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

=>\(AO=OC=\frac{AC}{2};OB=OD=\frac{BD}{2}\)

mà AC=BD

nên OA=OC=OB=OD=AC/2=BD/2

Ta có: ABEC là hình bình hành

=>AB=EC

mà AB=CD

nên CE=CD

=>C là trung điểm của DE

Xét ΔBDE có

C,F lần lượt là trung điểm của ED,EB

=>CF là đường trung bình của ΔBDE

=>CF//BD và \(CF=\frac{BD}{2}\)

CF//BD

=>CF//BO

Ta có: \(CF=\frac{BD}{2}\)

\(OB=OD=\frac{BD}{2}\)

Do đó: CF=OB=OD

Ta có: \(BO=OD=\frac{BD}{2}\)

\(BF=FE=\frac{BE}{2}\)

mà BD=BE

nên BO=OD=BF=FE

Xét tứ giác BOCF có

CF//BO

CF=BO

Do đó: BOCF là hình bình hành

Hình bình hành BOCF có BO=BF

nên BOCF là hình thoi

Hình thoi BOCF có \(\hat{OBF}=90^0\)

nên BOCF là hình vuông

Xét tứ giác BDKE có

C là trung điểm chung của BK và DE

=>BDKE là hình bình hành

Hình bình hành BDKE có BD=BE

nên BDKE là hình thoi

Hình thoi BDKE có \(\hat{DBE}=90^0\)

nên BDKE là hình vuông

b: ΔBCD vuông tại C

=>\(BC^2+CD^2=BD^2\)

=>\(BD^2=2BC^2\)

=>\(BD=BC\sqrt2\)

=>\(OD=\frac{BC\sqrt2}{2}\)

=>OD<>BC

mà BC=OF

nên OD<>OF

=>OFCD không thể là hình vuông