
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 2:
a: ĐKXĐ: x<>0
\(\left(14x^3+12x^2-14x\right):2x=\left(x+2\right)\left(3x-4\right)\)
=>\(\frac{14x^3+12x^2-14x}{2x}=\left(x+2\right)\left(3x-4\right)\)
=>\(7x^2+6x-7=3x^2-4x+6x-8\)
=>\(7x^2+6x-7=3x^2+2x-8\)
=>\(4x^2+4x+1=0\)
=>\(\left(2x+1\right)^2=0\)
=>2x+1=0
=>2x=-1
=>\(x=-\frac12\) (nhận)
b: (4x-5)(6x+1)-(8x+3)(3x-4)=15
=>\(24x^2+4x-30x-5-\left(24x^2-32x+9x-12\right)=15\)
=>\(24x^2-26x-5-24x^2+23x+12=15\)
=>-3x+7=15
=>-3x=8
=>\(x=-\frac83\)
Bài 1:
a: (x-2)(2x-1)-(2x-3)(x-1)-2
\(=2x^2-x-4x+2-\left(2x^2-2x-3x+3\right)-2\)
\(=2x^2-5x-\left(2x^2-5x+3\right)\)
\(=2x^2-5x-2x^2+5x-3=-3\)
b: \(x\left(x+3y+1\right)-2y\left(x-1\right)-x\left(x+y+1\right)\)
\(=x^2+3xy+x-2xy+2y-x^2-xy-x\)
=2y

a: Gọi M,N lần lượt là trung điểm của AB,CD
Ta có: ΔIAB vuông cân tại I
=>IA=IB; \(\hat{AIB}=90^0\) ; \(\hat{IAB}=\hat{IBA}=45^0\)
ΔKDC vuông cân tại K
=>KD=KC; \(\hat{DKC}=90^0;\hat{KDC}=\hat{KCD}=45^0\)
ΔIAB vuông tại I
=>\(IA^2+IB^2=AB^2\)
=>\(2\cdot IA^2=CD^2\left(1\right)\)
ΔKCD vuông tại K
=>\(KD^2+KC^2=DC^2\)
=>\(2\cdot KD^2=CD^2\left(2\right)\)
Từ (1),(2) suy ra IA=KD
mà IA=IB và KD=KC
nên IA=IB=KD=KC
Ta có: ΔIAB cân tại I
mà IM là đường trung tuyến
nên IM⊥AB tại M
Ta có: \(AM=MB=\frac{AB}{2}\)
\(DN=NC=\frac{DC}{2}\)
mà AB=CD
nên AM=MB=DN=NC
Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
Hình bình hành AMND có \(\hat{DAM}=90^0\)
nên AMND là hình chữ nhật
=>AM⊥MN
=>MN⊥AB
ΔKDC cân tại K
mà KN là đường trung tuyến
nên KN⊥DC tại N
mà DC//AB
nên KN⊥AB
mà MN⊥AB
và KN,MN có điểm chung là N
nên K,N,M thẳng hàng(1)
Ta có: IM⊥AB
MN⊥AB
mà IM,MN có điểm chung là M
nên I,M,N thẳng hàng(2)
Từ (1),(2) suy ra K,N,M,I thẳng hàng
Xét ΔEIK có AD//IK
nên \(\frac{EA}{AI}=\frac{ED}{DK}\)
mà AI=DK
nên EA=ED
Ta có: EA+AI=EI
ED+DK=EK
mà EA=ED và AI=DK
nên EI=EK
=>E nằm trên đường trung trực của IK(3)
Xét ΔFKI có BC//KI
nên \(\frac{FB}{BI}=\frac{FC}{CK}\)
mà BI=CK
nên FB=FC
Ta có: FB+BI=FI
FC+CK=FK
mà FB=FC và BI=CK
nên FI=FK
=>F nằm trên đường trung trực của IK(4)
từ (3),(4) suy ra FE là đường trung trực của IK
=>FE⊥IK
mà IK⊥CD
nên FE//CD
b: Xét ΔKEF có DC//EF
nên \(\frac{KD}{DE}=\frac{KC}{CF}\)
mà KD=KC
nên DE=CF
Ta có: KD+DE=KE
KC+CF=KF
mà KD=KC và DE=CF
nên KE=KF
=>IE=EK=KF=FI
=>IEKF là hình thoi
Hình thoi IEKF có \(\hat{EIF}=90^0\)
nên IEKF là hình vuông

a: Xét tứ giác AIBG có
AI//BG
AG//BI
Do đó: AIBG là hình bình hành
=>BG=AI

Bài 1:
a: Ta có: BH⊥AC
CD⊥CA
Do đó: BH//CD
Ta có: CH⊥AB
BD⊥AB
Do đó: CH//BD
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
mà O là trung điểm của BC
nên O là trung điểm của HD
=>H,O,D thẳng hàng
Bài 2:
a: Ta có: DM là phân giác của góc ADC
=>\(\hat{ADM}=\hat{MDC}\)
mà \(\hat{MDC}=\hat{AMD}\) (hai góc so le trong, AM//DC)
nên \(\hat{ADM}=\hat{AMD}\)
=>ΔADM cân tại A
b: Ta có: \(\hat{ADM}=\hat{CDM}=\frac12\cdot\hat{ADC}\) (DM là phân giác của góc ADC)
\(\hat{ABN}=\hat{CBN}=\frac12\cdot\hat{ABC}\) (BN là phân giác của góc ABC)
mà \(\hat{ADC}=\hat{ABC}\) (ABCD là hình bình hành)
nên \(\hat{ADM}=\hat{CDM}=\hat{ABN}=\hat{CBN}\)
Xét ΔMAD và ΔNCB có
\(\hat{MAD}=\hat{NCB}\)
AD=CB
\(\hat{MDA}=\hat{NBC}\)
Do đó: ΔMAD=ΔNCB
=>AM=CN
Ta có: AM+MB=AB
CN+ND=CD
mà AM=CN và AB=CD
nên MB=ND
Xét tứ giác MBND có
MB//ND
MB=ND
Do đó: MBND là hình bình hành

a: ABCD là hình vuông
=>AB=BC=CD=DA và AB//CD và AD//BC
Ta có:AB//CD
=>AB//CE
Xét tứ giác ABEC có
AB//EC
AC//BE
Do đó: ABEC là hình bình hành
=>AC=BE
mà AC=BD(ABCD là hình vuông)
nên BD=BE
=>ΔBDE cân tại B
Ta có: ABCD là hình vuông
=>AC⊥BD
mà AC//BE
nên BD⊥BE tại B
=>\(\hat{DBE}=90^0\)
ABCD là hình vuông
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
=>\(AO=OC=\frac{AC}{2};OB=OD=\frac{BD}{2}\)
mà AC=BD
nên OA=OC=OB=OD=AC/2=BD/2
Ta có: ABEC là hình bình hành
=>AB=EC
mà AB=CD
nên CE=CD
=>C là trung điểm của DE
Xét ΔBDE có
C,F lần lượt là trung điểm của ED,EB
=>CF là đường trung bình của ΔBDE
=>CF//BD và \(CF=\frac{BD}{2}\)
CF//BD
=>CF//BO
Ta có: \(CF=\frac{BD}{2}\)
\(OB=OD=\frac{BD}{2}\)
Do đó: CF=OB=OD
Ta có: \(BO=OD=\frac{BD}{2}\)
\(BF=FE=\frac{BE}{2}\)
mà BD=BE
nên BO=OD=BF=FE
Xét tứ giác BOCF có
CF//BO
CF=BO
Do đó: BOCF là hình bình hành
Hình bình hành BOCF có BO=BF
nên BOCF là hình thoi
Hình thoi BOCF có \(\hat{OBF}=90^0\)
nên BOCF là hình vuông
Xét tứ giác BDKE có
C là trung điểm chung của BK và DE
=>BDKE là hình bình hành
Hình bình hành BDKE có BD=BE
nên BDKE là hình thoi
Hình thoi BDKE có \(\hat{DBE}=90^0\)
nên BDKE là hình vuông
b: ΔBCD vuông tại C
=>\(BC^2+CD^2=BD^2\)
=>\(BD^2=2BC^2\)
=>\(BD=BC\sqrt2\)
=>\(OD=\frac{BC\sqrt2}{2}\)
=>OD<>BC
mà BC=OF
nên OD<>OF
=>OFCD không thể là hình vuông