
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Xét tứ giác AIBG có
AI//BG
AG//BI
Do đó: AIBG là hình bình hành
=>BG=AI

Bài 2
∆ADE có:
AD = AE (gt)
⇒ ∆ADE cân tại A
⇒ ∠ADE = (180⁰ - ∠DAE) : 2 = (180⁰ - ∠BAC) : 2 (1)
∆ABC cân tại A (gt)
⇒ ∠ABC = (180⁰ - ∠BAC) : 2 (2)
Từ (1) và (2) suy ra ∠ADE = ∠ABC
Mà ∠ADE và ∠ABC là hai góc đồng vị
⇒ DE // BC
∆ABC cân tại A (gt)
⇒ ∠ABC = ∠ACB
⇒ ∠DBC = ∠ECB
Tứ giác BDEC có:
DE // BC (cmt)
⇒ BDEC là hình thang
Mà ∠DBC = ∠ECB (cmt)
⇒ BDEC là hình thang cân
Bài 3
a) ABC cân tại A (gt)
AB = AC và ABC = ACB
Xét hai tam giác vuông: ABD và ACE có:
AB = AC (cmt)
A chung
ABD = ACE (cạnh huyền - góc nhọn)
AD = AE
b) ∆ADE có:
AD = AE (gt)
⇒ ∆ADE cân tại A
⇒ ∠AED = (180⁰ - ∠EAD) : 2 = (180⁰ - ∠BAC) : 2 (1)
∆ABC cân tại A (gt)
⇒ ∠ABC = (180⁰ - ∠BAC) : 2 (2)
Từ (1) và (2) suy ra ∠AED = ∠ABC
Mà ∠AED và ∠ABC là hai góc đồng vị
⇒ DE // BC
∆ABC cân tại A (gt)
⇒ ∠ABC = ∠ACB
⇒ ∠EBC = ∠DCB
Tứ giác BEDC có:
DE // BC (cmt)
⇒ BEDC là hình thang
Mà ∠EBC = ∠DCB (cmt)
⇒ BEDC là hình thang cân

Bài 1:
\(M=x^3-6x^2+12x-8\)
\(=x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3\)
\(=\left(x-2\right)^3\)
Thay x=12 vào M, ta được:
\(M=\left(12-2\right)^3=10^3=1000\)
Bài 2:
a: \(P=\left(x+1\right)^3-x\left(x-2\right)\left(x+3\right)\)
\(=x^3+3x^2+3x+1-x\left(x^2+3x-2x-6\right)\)
\(=x^3+3x^2+3x+1-x\left(x^2+x-6\right)\)
\(=x^3+3x^2+3x+1-x^3-x^2+6x=2x^2+9x+1\)
b: Thay x=2 vào P, ta được:
\(P=2\cdot2^2+9\cdot2+1=8+18+1=9+18=27\)
Bài 3:
a: \(5x^2-10x=5x\cdot x-5x\cdot2=5x\left(x-2\right)\)
b: \(x^2-12xy+36y^2-49\)
\(=\left(x-6y\right)^2-7^2\)
=(x-6y-7)(x-6y+7)
c: \(3x+x^2-3y-y^2\)
\(=x^2-y^2+3\left(x-y\right)\)
=(x-y)(x+y)+3(x-y)
=(x-y)(x+y+3)
Bài 4:
a: \(x\left(2x-1\right)-3\left(1-2x\right)=0\)
=>x(2x-1)+3(2x-1)=0
=>(2x-1)(x+3)=0
=>\(\left[\begin{array}{l}2x-1=0\\ x+3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac12\\ x=-3\end{array}\right.\)
b: \(\left(3x+4\right)^2-\left(3x-1\right)\left(3x+1\right)=49\)
=>\(9x^2+24x+16-9x^2+1=49\)
=>24x+17=49
=>24x=49-17=32
=>\(x=\frac{32}{24}=\frac43\)
c: \(x^2+2x=15\)
=>\(x^2+2x-15=0\)
=>(x+5)(x-3)=0
=>\(\left[\begin{array}{l}x+5=0\\ x-3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-5\\ x=3\end{array}\right.\)
Bài 5:
a: C=A+B
\(=xy-3x^2y^2+x^4-5y^3+x^4-5y^3-2x^2y^2-xy=-5x^2y^2+2x^4-10y^3\)
b: Bậc của C là 4
c: Thay x=-1;y=-1 vào C, ta được:
\(C=-5\cdot\left(-1\right)^2\cdot\left(-1\right)^2+2\cdot\left(-1\right)^4-10\cdot\left(-1\right)^3\)
=-5+2+10
=-3+10
=7
Bài 6:
a: \(A=2x^2-4x+2xy+y^2+2025\)
\(=x^2-4x+4+x^2+2xy+y^2+2021=\left(x-2\right)^2+\left(x+y\right)^2+2021\ge2021\forall x,y\)
Dấu '=' xảy ra khi x-2=0 và x+y=0
=>x=2 và y=-x=-2
b: (x-7)(x-5)(x-4)(x-2)-72
\(=\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72\)
\(=\left(x^2-9x+14\right)^2+6\left(x^2-9x+14\right)-72\)
\(=\left(x^2-9x+14+12\right)\left(x^2-9x+14-6\right)=\left(x^2-9x+26\right)\left(x^2-9x+8\right)\)
\(=\left(x^2-9x+26\right)\left(x-1\right)\left(x-8\right)\)

1: \(\frac{1-a\cdot\sqrt{a}}{1-\sqrt{a}}=\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)^{}}{1-\sqrt{a}}=1+\sqrt{a}+a\)
2: \(\frac{\sqrt{x+3}+\sqrt{x-3}}{\sqrt{x+3}-\sqrt{x-3}}=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}{\left(\sqrt{x+3}-\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}\)
\(=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)^2}{x+3-\left(x-3\right)}=\frac{x+3+x-3+2\sqrt{\left(x+3\right)\left(x-3\right)}}{6}\)
\(=\frac{2x+2\sqrt{x^2-9}}{6}=\frac{x+\sqrt{x^2-9}}{3}\)
4: \(\frac{3}{2\sqrt{9x}}=\frac{3}{2\cdot3\sqrt{x}}=\frac{1}{2\sqrt{x}}=\frac{\sqrt{x}}{2}\)
5: \(\frac{1}{2\sqrt{x}}=\frac{1\cdot\sqrt{x}}{2\sqrt{x}\cdot\sqrt{x}}=\frac{\sqrt{x}}{2x}\)
7: \(\frac{\sqrt{a^3}+a}{\sqrt{a}-1}=\frac{a\cdot\sqrt{a}+a}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a\left(a+2\sqrt{a}+1\right)}{a-1}=\frac{a^2+2a\cdot\sqrt{a}+a}{a-1}\)
8: \(\frac{2}{\sqrt{a}+\sqrt{2b}}=\frac{2\cdot\left(\sqrt{a}-\sqrt{2b}\right)}{\left(\sqrt{a}+\sqrt{2b}\right)\left(\sqrt{a}-\sqrt{2b}\right)}=\frac{2\sqrt{a}-2\sqrt{2b}}{a-2b}\)
10: \(\frac{25}{\sqrt{a}-\sqrt{b}}=\frac{25\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{25\sqrt{a}+25\sqrt{b}}{a-b}\)
11: \(-\frac{ab}{\sqrt{a}-\sqrt{b}}=-\frac{ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{-ab\cdot\sqrt{a}-ab\cdot\sqrt{b}}{a-b}\)
12567876
a: Xét ΔMNP và ΔKPN có
\(\hat{MNP}=\hat{KPN}\) (hai góc so le trong, MN//PK)
NP chung
\(\hat{MPN}=\hat{KNP}\) (hai góc so le trong, MP//NK)
Do đó: ΔMNP=ΔKPN
=>MN=KP; MP=KN
ta có: MP=KN
MP=NQ
Do đó: NK=NQ
=>ΔNKQ cân tại N
b: Ta có: ΔNKQ cân tại N
=>\(\hat{NKQ}=\hat{NQK}\)
mà \(\hat{NKQ}=\hat{MPQ}\) (hai góc đồng vị, MP//NK)
nên \(\hat{MPQ}=\hat{NQP}\)
Xét ΔMQP và ΔNPQ có
MP=NQ
\(\hat{MPQ}=\hat{NQP}\)
PQ chung
Do đó: ΔMQP=ΔNPQ
c: ΔMQP=ΔNPQ
=>\(\hat{MQP}=\hat{NPQ}\)
=>MNPQ là hình thang cân