cho A=3+3^2+3^3+...+3^99
tim n sao cho 2A+3=3^n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+1+3+3^2+3^3+...+3^2018
A=1+(1+3+3^2+3^3+...+3^2018)
Đặt:
B=1+3+3^2+3^3+...+3^2018
3B=3.(1+3+3^2+3^3+...+3^2018)
3B=3+3^2+3^3+...+3^2018+3^2019
3B=1+3^2+3^3+...+3^2018+3^2019-1
3B=B+3^2019-1
3B-B=B+3^2019-1-B
2B=3^2019-1
=>2A=2B+1
=3^2019-1+1
=3^2019
2A-1
=3^2019-1
=3^n-1
3^n-1=3^2019-1
=>n=2019
Vậy n=2019
A= 3 + 32 + 33 + ... + 3100
3A = 32 + 33 + 34 + ... + 3101
3A - A = (32 + 33 + 34 + ... + 3101) - (3 + 32 + 33 + ... + 3100)
2A = 3101 - 3
Ta có: 2A + 3 = 34n+1
= 3101 - 3 + 1 = 34n+1
= 3101 = 34n+1
=> 4n + 1 =101
4n = 101 - 1
4n = 100
n = 100 : 4
n = 25
A = 3 + 32 + 33 + 34 +......+ 3100
3A = 32 + 33 + 34+.........+ 3100+ 3101
3A - A = 3101 - 3
2A = 3101 - 3
2A + 3 = 3101 - 3 + 3 = 3101
2A + 3 = 34n+1 ⇔ 3101 = 34n+1
101 = 4n + 1
4n = 101 - 1
4n = 100
n = 100 : 4
n = 25
A=3+32+33+...+3100
=>3A=32+33+34+...+3101
=>3A-A=(32+33+34+...+3101)-(3+32+33+...+3100)
=>2A=3101-3
=>2A+3=3101-3+3=3101=3n
=>n=101
Vậy n=101
A=3+32+33+...+3100
=>3A=32+33+34+...+3101
=>3A-A=(32+33+34+...+3101)-(3+32+33+...+3100)
=>2A=3101-3
=>2A+3=3101-3+3=3101=3n
=>n=101
Vậy n=101
A=3+3^2+3^3+...+3^100
3A=3^2+3^3+...+3^101
=>.3A-A=3^101-3
=>2A=3^101-3
=>2A+3=3^101
=>n=101
Vay n=101
k nhanh nhé hi
Ta có :
A=3+32+...+32015
=> 3A-A=32+33+...+32016- (3+32+...+32015)
=>2A=32016-3
lại có: 2A+3=3n
=>32016-3+3=3n
=>32016=3n
=>n=2016
Vậy n=2016
ta có : a=3+3^2+3^3+...+3^99
3a=3^2+3^3+...+3^100
=> 3a-a=3^100-3
2a=3^100-3
ta có : 2a+3=3^n
3^100-3+3=3^n
3^100=3^n
=> n=100