tìm x
(2x-1)10=495
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+1\right)^{10}=49^5\)
\(\left(2x+1\right)^{10}=\left(7^2\right)^5\)
\(\left(2x+1\right)^{10}=7^{10}\)
\(\left(2x+1\right)^{10}=7^{10}\) hoặc \(\left(2x+1\right)^{10}=\left(-7\right)^{10}\)
\(2x+1=7\) hoặc \(2x+1=-7\)
*) \(2x+1=7\)
\(2x=6\)
\(x=3\)
*) \(2x+1=-7\)
\(2x=-8\)
\(x=-4\)
Vậy \(x=-4;x=3\)
(2x +1)10 = 495
(2x+1)10 = (72)5
(2x +1)10 = 710
\(\left[{}\begin{matrix}2x+1=7\\2x+1=-7\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=6\\2x=-8\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
a) <=>80-x+6=9.8
<=>86-x=72
<=>x=14
b) <=>495-5x-20=10
<=>475-5x=10
<=>5x=465
<=>x=93
\(\frac{1}{1\times10}+\frac{1}{2\times15}+\frac{1}{3\times20}+...+\frac{1}{98\times495}+\frac{1}{99\times500}\)
\(=\frac{1}{1\times2\times5}+\frac{1}{2\times3\times5}+\frac{1}{3\times4\times5}+...+\frac{1}{98\times99\times5}+\frac{1}{99\times100\times5}\)
\(=\frac{1}{5}\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{100}\right)=\frac{1}{5}\times\frac{99}{100}=\frac{99}{500}\)
\(\frac{1}{1\times10}+\frac{1}{2\times15}+\frac{1}{3\times20}+...+\frac{1}{98\times495}+\frac{1}{99\times500}\)
\(=\frac{1}{1\times2\times5}+\frac{1}{2\times3\times5}+\frac{1}{3\times4\times5}+...+\frac{1}{98\times90\times5}+\frac{1}{90\times100\times5}\)
\(=\frac{1}{5}\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+...+\frac{99-98}{98\times99}+\frac{100-99}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{100}\right)=\frac{99}{500}\)
a) 1 + 2 + 3 + ....... + x = 1275
<=> ( x + 1 ) . x : 2 = 1275
( x + 1 ) . x = 1275 .2
( x + 1 ) . x = 2550
( x + 1 ) . x = 51 . 50
( x + 1 ) . x = ( 50 + 1 ) . 50
<=> x = 50
b) ( x + 1 ) +( x + 2 ) +..... +( x + 99 ) = 6138
x + 1 + x + 2 + .........+ x + 99 = 6138
99x + ( 1 + 2 + .......... + 99 ) = 6138
99x + 4950 = 6138
99x = 1188
x = 1188 : 99
x = 12
c) x . 1 + x . 2 + ......... + x . 99 = 495
x. ( 1 + 2 + ...... + 99 ) = 495
x . 4950 = 495
x = 495 : 4950
x = 1/10
a: Ta có: \(x\left(2x-3\right)-\left(2x-1\right)\left(x+5\right)=17\)
\(\Leftrightarrow2x^2-3x-2x^2-10x+x+5=17\)
\(\Leftrightarrow-12x=12\)
hay x=-1
-2x(x + 3) + x(2x - 1) = 10
-2x² - 6x + 2x² - x = 10
-7x = 10
x = -10/7
Ta có
(2x-1)^10 = 49^5
=> (2x-1)^10 = (7^2)^5
=> (2x-1)^10 = 7^10
=> 2x-1 = 7
=> 2x= 8
=> x=4
(2x-1)10=495
=> (2x-1)10=(72)5=[(-7)2 ]5
=> (2x-1)10=710=(-7)10
=> 2x-1=7 hoặc 2x-1=-7
=> 2x=8 hoặc 2x=-6
=> x=4 hoặc x=-3