Cho tam giác ABC cân tại A, phân giác CD.Qua D vẽ đường thẳng vuông góc với CD cắt BC tại F; đường thẳng kẻ qua D và song song với BC cắt AC tại E. Phân giác của góc BAC cắt DE tại M. Chứng minh:
a, CF= 2BD
b, MD= \(\frac{1}{4}\)CF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCDF vuông tại D và ΔCDK vuông tại D có
CD chung
góc FCD=góc KCD
=>ΔCDF=ΔCDK
b: Xét ΔEDC có góc EDC=góc ECD
nên ΔECD cân tại E
=>EC=ED
=>góc ECD=góc EDC
=>góc EDK=góc EKD
=>ΔKED cân tại E
a: \(\widehat{EBC}=\dfrac{\widehat{ABC}}{2}\)
\(\widehat{DCB}=\dfrac{\widehat{ACB}}{2}\)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{EBC}=\widehat{DCB}\)
Xét ΔDBC và ΔECB có
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
\(\widehat{DCB}=\widehat{EBC}\)
Do đo: ΔDBC=ΔECB
b: Xét ΔBEF có \(\widehat{EBF}=\widehat{EFB}\left(=\widehat{DCB}\right)\)
nên ΔBEF cân tại E