Cho A = \(\frac{x^2+7}{x+2}\)
Tìm x thuộc Z đê A thuộc Z và Tìm A đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A\(\in\)Z thì \(\frac{x+3}{x-2}\in Z\)
=>x+3 chia hết cho x-2
=>x-2+5 chia hết cho x-2
Mà x-2 chia hết cho x-2
=>5 chia hết cho x-2
=>x-2\(\in\)Ư(5)
=>x-2\(\in\){-5;-1;1;5}
=>x\(\in\){-3;1;3;7}
Để A thuộc Z
=>x+3 chia hết x-2
=>x-2+5 chia hết x-2
=>5 chia hết x-2
=>x-2 thuộc {1;-1;5;-5}
=>x thuộc {3;1;7;-3}
Để A thuộc Z
=> x + 3 chia hết cho x - 2
=> x - 2 + 5 chia hết cho x - 2
Vì x - 2 chia hết cho x - 2
=> 5 chia hết cho x - 2
Vì x thuộc Z
=> x - 2 thuộc Z
=> x - 2 thuộc Ư(5)
=> x - 2 thuộc {1; -1; 5; -5}
=> x thuộc {3; 1; 7; -3}
ĐIỀU KIỆN XÁC ĐỊNH: X KHÁC 2
TA có:
A thuộc Z (=) x+3 /(chia hết ) x-2
(=) (x-2 +5) / x-2
mà x-2 / x-2
=) 5/x-2
=) (x-2) thuộc Ư(5)
GIẢI RA TA ĐƯỢC X =7; X=3; X=-3; X=1
Để A thuộc Z thì x + 3 chia hết cho x - 2
<=> x - 2 + 5 chia hết cho x - 2
=> 5 chia hết cho x - 2
=> x - 2 thuộc Ư(5) = {-5;-1;1;5}
=> x = {-3;1;3;7}
ĐKXĐ: \(x\ne\pm3\)
a
Khi x = 1:
\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)
Khi x = 2:
\(A=\dfrac{3.2+2}{2-3}=-8\)
Khi x = \(\dfrac{5}{2}:\)
\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)
b
Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên
\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)
Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)
c
Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên
\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)
\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)
d
\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)
=> Để A, B cùng là số nguyên thì x = 4.
a) \(A=\frac{x+3}{x-2}=\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
để A \(\in\) Z thì x - 2 là ước của 5.
=> x – 2 \(\in\left\{\pm1;\pm5\right\}\)
* x = 3 => A = 6
* x = 7 => A = 2
* x = 1 => A = - 4
* x = -3 => A = 0
b) \(A=\frac{1-2x}{x+3}=\frac{7-2x-6}{x+3}=\frac{7-2\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)
- 2 để A \(\in\) Z thì x + 3 là ước của7.
=> x + 3 \(\in\left\{\pm1;\pm7\right\}\)
* x = -2 => A = 5
* x = 4 => A = -1
* x = -4 => A = - 9
* x = -10 => A = -3 .
a: Để B nguyên thì \(-7⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{-2;-4;4;-10\right\}\)
b: Để A là số nguyên thì \(3x+2⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;11;-11\right\}\)
hay \(x\in\left\{-2;-4;14;-8\right\}\)
Để A và B cùng là số nguyên thì \(x\in\left\{-2;-4\right\}\)
a. \(A=\left[\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right].\frac{x+7}{x}\)
\(=\left[\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right].\frac{x+7}{x}\)
\(=\left[\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{x^2-1}\right].\frac{x+7}{x}\)
\(=\frac{x^2-1}{x^2-1}.\frac{x+7}{x}\)
\(=\frac{x+7}{x}\)
b. Để A \(\in\)Z thì \(\frac{x+7}{x}\in Z\)
=> x+7 chia hết cho x
Mà x chia hết cho x
=> 7 chia hết cho x
=> x \(\in\)Ư(7)={-7; -1; 1; 7}
Vậy x \(\in\){-7; -1; 1; 7} thì A \(\in\)Z.
Để phân số A \(\in\) Z
\(\Rightarrow\) x2 + 7 chia hết cho x + 2
\(\Rightarrow\) x( x + 2 ) + 5 chia hết cho x + 2
\(\Rightarrow\) 5 chia hết cho x + 2
\(\Rightarrow x+2\inƯ\left(5\right)\) Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow x+2\in\left\{1;-1;5;-5\right\}\)
\(\Rightarrow x\in\left\{-1;-3;3;-7\right\}\)
Với \(x=-1\Rightarrow A=\frac{\left(-1\right)^2+7}{-1+2}=\frac{8}{1}=8\)
Với \(x=-3\Rightarrow A=\frac{\left(-3\right)^2+7}{-3+2}=\frac{15}{-1}=-15\)
Với \(x=3\Rightarrow A=\frac{3^2+7}{3+2}=\frac{15}{5}=3\)
Câu cuối bạn tự thử nha
Sia bét ồi Nguyến Phạm Hồng Anh ơi!