Cho tam giác đều ABC. Trên các cạnh AB, AC lần lượt lấy các điểm M và N sao cho AM=AN. Chứng minh rằng:
a) Tam giác AMN là tam giác đều.
b) MN//BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\dfrac{AM}{AB}=\dfrac{1}{4}\)
\(\dfrac{AN}{AC}=\dfrac{1.5}{6}=\dfrac{1}{4}\)
Do đó: \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)\(\left(=\dfrac{1}{4}\right)\)
Xét ΔABC có
M\(\in\)AB(gt)
N\(\in\)AC(gt)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(cmt)
Do đó: MN//BC(Định lí Ta lét đảo)
a) Xét tam giác ABM và tam giác ACN:
Góc A chung
AB = AC (do tam giác ABC cân tại A)
AM = AN (gt)
Suy ra: tam giác ABM = tam giác ACN (c g c)
b) Xét tam giác AMN có :
AM =AN (gt)
Suy ra: tam giác AMN cân tại A
Suy ra góc ANM = \(\dfrac{\text{180 - góc A}}{2}\)
mà góc ABC = \(\dfrac{\text{180 - góc A}}{2}\) ( do tam giác ABC cân tại A)
Suy ra: góc ANM = góc ABC
Mà 2 góc này ở vị trí đồng vị của MN và BC
Suy ra MN song song BC
Xét ΔANM và ΔABC có
AN/AB=AM/AC
\(\widehat{NAM}\) chung
Do đó: ΔANM\(\sim\)ΔABC
a: Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
b: AM+MB=AB
AN+NC=AC
mà AM=AN và AB=AC
nên MB=NC
c: Đề sai rồi bạn
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: AM=ED/2
AN=BC/2
mà ED=BC
nên AM=AN
a) \(\Delta ABC\)là tam giác đều
\(\Rightarrow\)\(\widehat{ABC}=\widehat{ACB}=\widehat{BAC}=60^0\)
\(\Delta AMN\)cân tại \(A\)do \(AM=AN\)(gt)
mà \(\widehat{MAN}=60^0\)
nên \(\Delta AMN\)là tam giác đều
b) \(\Delta AMN\)là tam giác đều
\(\Rightarrow\)\(\widehat{AMN}=60^0\)
\(\Rightarrow\)\(\widehat{AMN}=\widehat{ABC}\left(=60^0\right)\)
mà \(\widehat{AMN}\)và \(\widehat{ABC}\)đồng vị
\(\Rightarrow\)\(MN//BC\)