Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABM và tam giác ACN:
Góc A chung
AB = AC (do tam giác ABC cân tại A)
AM = AN (gt)
Suy ra: tam giác ABM = tam giác ACN (c g c)
b) Xét tam giác AMN có :
AM =AN (gt)
Suy ra: tam giác AMN cân tại A
Suy ra góc ANM = \(\dfrac{\text{180 - góc A}}{2}\)
mà góc ABC = \(\dfrac{\text{180 - góc A}}{2}\) ( do tam giác ABC cân tại A)
Suy ra: góc ANM = góc ABC
Mà 2 góc này ở vị trí đồng vị của MN và BC
Suy ra MN song song BC
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: AM=ED/2
AN=BC/2
mà ED=BC
nên AM=AN
TG ABC đều =>AB=AC=BC=>AM+MB=BN+NC=CZ+ZA
Mà AM=BN=CZ=>BM=NC=AZ
Xét Tg AMZ và tg CZN, có:
Góc A= góc C( Tg ABC đều)
AM=CZ
AZ=CN
Vậy tg AMZ= tg CZN(c.g.c)
=> MZ=NZ( cạnh tương ứng)(1)
Tương tự ta có: MZ=MN(2)
Từ (1), (2)=> MZ=ZN=NM=> tg MNZ đều
a) \(\Delta ABC\)là tam giác đều
\(\Rightarrow\)\(\widehat{ABC}=\widehat{ACB}=\widehat{BAC}=60^0\)
\(\Delta AMN\)cân tại \(A\)do \(AM=AN\)(gt)
mà \(\widehat{MAN}=60^0\)
nên \(\Delta AMN\)là tam giác đều
b) \(\Delta AMN\)là tam giác đều
\(\Rightarrow\)\(\widehat{AMN}=60^0\)
\(\Rightarrow\)\(\widehat{AMN}=\widehat{ABC}\left(=60^0\right)\)
mà \(\widehat{AMN}\)và \(\widehat{ABC}\)đồng vị
\(\Rightarrow\)\(MN//BC\)