Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta ABC\)là tam giác đều
\(\Rightarrow\)\(\widehat{ABC}=\widehat{ACB}=\widehat{BAC}=60^0\)
\(\Delta AMN\)cân tại \(A\)do \(AM=AN\)(gt)
mà \(\widehat{MAN}=60^0\)
nên \(\Delta AMN\)là tam giác đều
b) \(\Delta AMN\)là tam giác đều
\(\Rightarrow\)\(\widehat{AMN}=60^0\)
\(\Rightarrow\)\(\widehat{AMN}=\widehat{ABC}\left(=60^0\right)\)
mà \(\widehat{AMN}\)và \(\widehat{ABC}\)đồng vị
\(\Rightarrow\)\(MN//BC\)
a: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
b: Xét ΔABN và ΔACM có
AB=AC
\(\widehat{BAN}\) chung
AN=AM
Do đó: ΔABN=ΔACM
Suy ra: BN=CM
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
Ta có hình vẽ:
A B C M N
Ta có:
AB = AM ( gt )
A1* = A2* ( 2 gđđ )
AC = AN ( gt )
Do đó tam giác ABC = tam giác AMN
b) Ta có: tam giác ABC = tam giác AMN
=> BC = MN
c) Có N* = C* ( tam giác ABC = tam giác AMN )
Mà N* và C* là hai góc so le trong
=> NM // BC
Chú ý: * là góc.
a: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
b: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
c: Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MBC}=\widehat{NCB}\)
BC chung
Do đó: ΔMBC=ΔNCB
A B C M N
a, Vì AB = AC => \(\Delta ABC\)cân tại A
=> \(\widehat{ABC}=\widehat{ACB}\)
Xét \(\Delta ABM\)và \(\Delta ACN\), ta có:
AB = AC (gt)
\(\widehat{ABC}=\widehat{ACB}\)(Chứng minh trên)
BM = CN (gt)
=> \(\Delta ABM=\Delta ACN\left(c.g.c\right)\)
=> \(\widehat{BAM}=\widehat{CAN}\)
Vậy \(\widehat{BAM}=\widehat{CAN}\)
b,Vì \(\Delta ABM=\Delta ACN\)(Chứng minh trên) => AM = AN
=> \(\Delta AMN\)cân tại A
\(\Rightarrow\widehat{AMN}=\widehat{ANM}\)
Vậy \(\widehat{AMN}=\widehat{ANM}\)