K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2020

tam giác BMH đồng dạng với tam giác MCI => \(\frac{BM}{MC}=\frac{MH}{CI}=\frac{BH}{MI}\left(1\right)\)

từ (1) => MB.MC=\(\frac{MH}{CI}\).MC2=\(\frac{MH}{CI}\left(MI^2+IC^2\right)\)=MH.IC+\(\frac{MI}{IC}\cdot MI^2\)

hay MB.MC=IA.IC+\(\frac{BH}{MI}\cdot MI^2\)\(=IA\cdot IA+HB\cdot MI=IA\cdot IC+HB\cdot HA\)

8 tháng 1 2018

B C A D E M N I H K

a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\)  (Hai góc đối đỉnh)

Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)

Xét tam giác vuông BDM và CEN có:

BD = CE

\(\widehat{ECN}=\widehat{DBM}\)  (cmt)

\(\Rightarrow\Delta BDM=\Delta CEN\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow BM=CN\)   (Hai cạnh tương ứng)

b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)

Ta thấy MD và NE cùng vuông góc BC nên MD // NE 

Suy ra \(\widehat{DMI}=\widehat{ENI}\)   (Hai góc so le trong)

Xét tam giác vuông MDI và NEI có:

MD = NE

\(\widehat{DMI}=\widehat{ENI}\)

\(\Rightarrow\Delta MDI=\Delta NEI\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow MI=NI\)

Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.

c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\)    (1)  và BK = CK

Xét tam giác BMK và CNK có:

BM = CN (cma)

MK = NK (cmb)

BK = CK (cmt)

\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\)   (2)

Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)

Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)

Vậy \(KC\perp AN\)

16 tháng 9 2018

dvdtdhnsrthwsrh

3 tháng 8 2015

A B C M N H

a) Ta có: góc MNC = góc BAC = 900

=> MN // BC  (2 góc đồng vị bằng nhau)    (đpcm)

b) Ta có:  AC // HM  (gt) 

Và AC vuông góc với AB  (góc BAC = 900)

=> MH vuông góc với AB    (đpcm)

3 tháng 8 2015

câu a) MN // Ab mới đúng bạn nhé

b: Xét ΔMHC vuông tại H và ΔMAE vuông tại A có 

\(\widehat{HMC}=\widehat{AME}\)

Do đó: ΔMHC\(\sim\)ΔMAE

Suy ra: \(\dfrac{MH}{MA}=\dfrac{MC}{ME}\)

hay \(MA\cdot MC=MH\cdot ME\)

12 tháng 8 2021

Lém cho mình cái hình