A=1+3+3^2+3^3+....+3^100 và B=3^101:2.Tính B-A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{3^{100}.\left(-2\right)+3^{101}}{\left(-3\right)^{101}-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2\right)+3^{100}.3}{\left(-3\right)^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2+3\right)}{3^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.1}{3^{100}.\left(-3-1\right)}\)
A = \(\dfrac{3^{100}}{3^{100}}\) . \(\dfrac{1}{-4}\)
A = - \(\dfrac{1}{4}\)
Ta có : A = 1 + 3 + ... + 3100
3A = 3 + 32 + ... + 3101
3A - A = ( 3 + ... + 3101 ) - ( 1 + ... + 3100 )
2A = 3101 - 1
Ta lại có : B = 3101 : 2
2B = 3101
Khi đó : 2B - 2A = 3101 - ( 3101 - 1 )
2 . ( B - A ) = 1
B - A = 1 / 2
a: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{100\cdot101}\)
=1-1/2+1/2-1/3+...+1/100-1/101
=1-1/101=100/101
b: \(A=1+\dfrac{1}{2}+1+\dfrac{1}{6}+1+\dfrac{1}{12}+...+1+\dfrac{1}{10100}\)
\(=100+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)\)
\(=101-\dfrac{1}{101}< 101\)
B-A=(1*3-1*2)+(2*4-2*3)+...+(100*102-100*101)
B-A=1+2+...+100
B-A=5050
101 + 100 + ... + 2 + 1 = 101x102/2 = 101x51 = 5151
101 - 100 + 99 - .. + 1 = ( 101 -100 ) + ( 99 - 98 ) + ... + ( 3 - 2 ) + 1 = 1 + 1 + 1 + ... + 1 ( 51 số ) = 51
suy ra C = 5151/51 = 101
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
3737x43 - 4343x36 = 37x101x43 - 43x101x36 = 43x101 = 4343
2 + 4 + 6 +... + 100 = 2x( 1 + 2 + ... + 50 ) = 2x50x51/2 = 50x51 = 2550
vậy D = 4343/2550
Mk thấy phần a dễ lên bạn tự làm nha
B=(37373737.43-43434343.37):(12+22+32+............+1002)
B=(37.1010101.43-43.101010101.37):(12+22+32+............+1002)
B=0:(12+22+32+............+1002)
B=0
Vậy B=0
Chúc bn học tốt
\(A=1+3+3^2+3^3+.....+3^{100}\)
\(3A=3+3^2+3^3+3^4+.....+3^{100}+3^{101}\)
\(2A=3^{101}-1\)
\(A=\frac{3^{101}-1}{2}\)
\(B=\frac{3^{101}}{2}\)
\(B-A=\frac{3^{101}}{2}-\frac{3^{101}-1}{2}\)
\(B-A=3^{101}-\left(3^{101}-1\right)=3^{101}-3^{101}+1\)
\(B-A=1\)
Ta có:
\(A=1+3+3^2+...+3^{100}\)
\(\Leftrightarrow3.A=3+3^2+3^3+...+3^{101}\)
\(\Leftrightarrow3.A-A=3^{101}-1\)
\(\Leftrightarrow A=\frac{3^{101}-1}{2}\)
\(\Leftrightarrow A-B=\frac{3^{101}-1}{2}-\frac{3^{101}}{2}=-\frac{1}{2}\)