K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

hình : tự vẽ

xét \(\Delta ABC\)cân tại A

=> AB=AC ( t/c tam giác cân)

=>\(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{A}}{2}\)( t/c tam giác cân) (1)

xét \(\Delta AEC\)và \(\Delta AFB\)

\(\widehat{A}\)-chung

AB=AC ( cmt)

\(\widehat{ABC}=\widehat{ACB}\)

=> \(\Delta AEC\)=\(\Delta AFB\)(g.c.g)

=AE=AF ( 2 c t ứ)

Xét \(\Delta AEF\): AE=AF (cmt)

=>\(\Delta AEF\)cân tại  A ( đ/nghĩa)

=>\(\widehat{AEF}=\widehat{AFE}=\frac{180^o-\widehat{A}}{2}\)(t/c tam giác cân ) (2)

Từ (1) và (2)

=>\(\widehat{AEF}=\widehat{ABC}\)

mà 2 góc này lại ở vị trí đồng vị của EF và BC

=> EF//BC

b) Ta có : AB= AC ( cmt)

AE = AF

=> AB-AE=AC-AF

=>BE=FC

rồi cm nốt ik mik lười quá T_T

a) Mk nghĩ bn cheps sai đề bài rùi!!! Phải là c/m: tam giác ABD = tam giác ACD chứ!!

Xét \(\Delta ABD\)và \(\Delta ACD\)có:

     AB = AC (gt)

     \(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{A}\))

      AD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)

b) Mk nghĩ bn lại sai đề bài!!! Làm sao c/m đc EF = AD??!!!! Đáng lẽ ra phải là EF = BD ms đúng chứ!!!!

Xét \(\Delta AEF\)và \(\Delta ADB\)có:

      AE = AD (gt)

      \(\widehat{EAF}=\widehat{DAB}\)(2 góc đối đỉnh)

       AF = AB (gt)

\(\Rightarrow\Delta AEF=\Delta ADB\left(c.g.c\right)\)

=> EF = DB (2 cạnh tương ứng)

c) Ta có: AF = AB, mà AC = AB

=> AF = AC

Xét \(\Delta AHF\)và \(\Delta AHC\)có:

       AF = AC (cmt)

       AH là cạnh chung

       HF = HC (H là trung điểm của FC)

\(\Rightarrow\Delta AHF=\Delta AHC\left(c.c.c\right)\)

\(\Rightarrow\widehat{FAH}=\widehat{CAH}\)(2 góc tương ứng)

=> AH là tia phân giác của \(\widehat{CAF}\)

d) 

xl ng ae ! vì mk ngu hình nên nhờ đến mạng giúp đỡ nên đã tìm đc https://h.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+c%C3%B3+tia+ph%C3%A2n+gi%C3%A1c+c%E1%BB%A7a+g%C3%B3c+B+c%E1%BA%AFt+AC+t%E1%BA%A1i+M+.+Tr%C3%AAn+tia+%C4%91%E1%BB%91i+c%E1%BB%A7a+tia+AB+l%E1%BA%A5y+%C4%91i%E1%BB%83m+E+sao+cho+BE+%3D+BC+.+Tr%C3%AAn+tia+%C4%91%E1%BB%91i+c%E1%BB%A7a+tia+BC+l%E1%BA%A5y+%C4%91i%E1%BB%83m+F+sao+cho+BF+%3D+AB+.+Ch%E1%BB%A9ng+minh+%3A++a+%29+C%C3%A1c+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+AF+%2C+BM+%2C+EC+song+song+v%E1%BB%9Bi+nhau+%3B++b+%29+N%E1%BA%BFu+BM+vu%C3%B4ng+g%C3%B3c+AC+th%C3%AC+AE+%3D+FC+%3B++c+%29+N%E1%BA%BFu+BM+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+AC+v%C3%A0+ABC+%3D+90+%C4%91%E1%BB%99+th%C3%AC+AC+%3D+EC+%3D+EF+%3D+FA+.&subject=0

xin cảm phiền ng ae vào nhé ~ cảm ơn ng ae 

19 tháng 12 2021

Sheesh link dài thế

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Lời giải:

a) Theo tính chất đường phân giác ta có:

$\frac{BE}{ED}=\frac{AB}{AD}$

$\frac{AF}{FC}=\frac{AB}{BC}$

Mà $ABCD$ là hình bình hành nên $AD=BC\Rightarrow \frac{AB}{AD}=\frac{AB}{BC}$ 

$\Rightarrow \frac{BE}{ED}=\frac{AF}{FC}$ (đpcm)

b) Gọi O là giao điểm $AC,BD$. Ta có:

\(\frac{BE}{ED}=\frac{BD-ED}{ED}=\frac{2DO-ED}{ED}=\frac{2DO}{ED}-1\)

Tương tự: \(\frac{AF}{FC}=\frac{2OC}{FC}-1\)

Mà \(\frac{BE}{ED}=\frac{AF}{FC}\Rightarrow \frac{DO}{ED}=\frac{OC}{FC}\). Theo định lý Talet đảo suy ra $EF\parallel DC$ hay $EF\parallel AB$ (đpcm)

 

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Hình vẽ:

undefined