K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Lời giải:

a) Theo tính chất đường phân giác ta có:

$\frac{BE}{ED}=\frac{AB}{AD}$

$\frac{AF}{FC}=\frac{AB}{BC}$

Mà $ABCD$ là hình bình hành nên $AD=BC\Rightarrow \frac{AB}{AD}=\frac{AB}{BC}$ 

$\Rightarrow \frac{BE}{ED}=\frac{AF}{FC}$ (đpcm)

b) Gọi O là giao điểm $AC,BD$. Ta có:

\(\frac{BE}{ED}=\frac{BD-ED}{ED}=\frac{2DO-ED}{ED}=\frac{2DO}{ED}-1\)

Tương tự: \(\frac{AF}{FC}=\frac{2OC}{FC}-1\)

Mà \(\frac{BE}{ED}=\frac{AF}{FC}\Rightarrow \frac{DO}{ED}=\frac{OC}{FC}\). Theo định lý Talet đảo suy ra $EF\parallel DC$ hay $EF\parallel AB$ (đpcm)

 

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Hình vẽ:

undefined

a: Xét tứ giác AKCI có

AK//CI

AI//CK

Do đó: AKCI là hình bình hành

a: Xét ΔABD có AE là phân giác

nên \(\dfrac{DE}{EB}=\dfrac{AD}{AB}\)

Xét ΔDAC có DF là phân giác

nên \(\dfrac{AF}{FC}=\dfrac{AD}{DC}=\dfrac{AD}{AB}\)

=>\(\dfrac{DE}{EB}=\dfrac{AF}{FC}\)

b:

Ta có: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Sửa đề: \(\dfrac{DE}{OE}=\dfrac{AF}{FO}\)

Ta có: \(\dfrac{DE}{EB}=\dfrac{AF}{FC}\)

=>\(\dfrac{EB}{DE}=\dfrac{FC}{FA}\)

=>\(\dfrac{EB+DE}{DE}=\dfrac{FC+FA}{FA}\)

=>\(\dfrac{BD}{DE}=\dfrac{AC}{FA}\)

=>\(\dfrac{2OD}{DE}=\dfrac{2OA}{FA}\)

=>\(\dfrac{OD}{DE}=\dfrac{OA}{FA}\)

=>\(\dfrac{OD-DE}{DE}=\dfrac{OA-FA}{FA}\)

=>\(\dfrac{OE}{DE}=\dfrac{OF}{FA}\)

=>\(\dfrac{DE}{OE}=\dfrac{AF}{OF}\)

Xét ΔOAD có \(\dfrac{OF}{FA}=\dfrac{OE}{ED}\)

nên FE//AD

Ta có: FE//AD

AD//BC

Do đó: FE//BC

13 tháng 1

giúp em nhanh vs plss

 

4 tháng 1 2022

bạn tham khảo nha

https://cdn.lazi.vn/storage/uploads/edu/answer/1628930843_lazi_652558.jpg

5 tháng 11 2016

a ) Ta có :

Góc BAD + ADC = 180o

=> \(\frac{1}{2}gocBAD+\frac{1}{2}gocADC=\frac{1}{2}.180^o\)

=> \(gocMAD+gocMDA=90^o\)

=> Xét \(\Delta MAD\)có \(gocMAD+gocMDA=90^o\Rightarrow gocAMD=90^o\)

=> Sử dụng góc kề bù ta suy ra \(gocAMD=gocAMF=gocDME=90^o\)

Xét \(\Delta AMD=\Delta AMF\left(g.c.g\right)\)

\(gocDAM=gocFAM\)( AE là phân giác góc A )

Chung cạnh AM

\(gocAMD=gocAMF\left(cmt\right)\)

=> \(\Delta AMD=\Delta AMF\left(g.c.g\right)\)

=> M là trung điểm DF

Tớ chỉ làm được tới đây

10 tháng 12 2016

Có bao giờ bạn tự hỏi mình đánh làm cái thế này

3 tháng 11 2016

A B C D E F M N K

a) Ta có :

Góc BAD + Góc ADC = 180o

\(\Rightarrow\frac{1}{2}\widehat{BAD}+\frac{1}{2}\widehat{ADC}=\frac{1}{2}.180^o\)

\(\Rightarrow\widehat{MAD}+\widehat{MDA}=90^o\)

Xét \(\Delta MAD\)có \(\widehat{MAD}+\widehat{MDA}=90^o\Rightarrow\widehat{AMD}=90^o\)

\(\Rightarrow\widehat{AMD}=\widehat{AMF}=\widehat{DME}=90^o\)( SỬ dụng góc kề bù để suy ra )

Xét \(\Delta AMD\)và \(\Delta AMF:\)

\(\widehat{DAM}=\widehat{FAM}\)( AE là phân giác \(\widehat{A}\))

Chung cạnh AM

\(\widehat{AMD}=\widehat{AMF}\)( cmt )

\(\Rightarrow\Delta AMD=\Delta AMF\left(g.c.g\right)\)

\(\Rightarrow M\)là trung điểm DF

Xét \(\Delta AFM\)và \(\Delta EDM\), có :

\(\widehat{AFM}=\widehat{EDF}\)( 2 góc so le trong vì AF//DE )

\(FM=DM\)( M là trung điểm DF )

\(\widehat{FMA}=\widehat{DME}=90^o\)

\(\Rightarrow\Delta AMF=\Delta EMD\left(g.c.g\right)\)

\(\Rightarrow\)M là trung điểm AE

Tứ giác ADEF có hai đường chép vuông góc với nhau tại trung điểm mỗi đường nên là hình thoi.

b) Từ N kẻ đường thằng song song với AB ( CD ); cắt BC tại K.

Có \(\widehat{FBN}=\widehat{BNK}\)( So le trong )

Mà \(\widehat{FBN}=\widehat{KBN}\)( BN là phân giác góc B )

\(\Rightarrow\widehat{BNK}=\widehat{KBN}\) nên tam giác KBN cân tại K; hay BK = NK

Tương tự chứng minh tam giác CNK cân tại K; hay NK = KC

\(\Rightarrow BK=KC;\)hay K là trung điểm BC

\(AB\text{//}CD\Rightarrow FB\text{//}EC\)

\(\Rightarrow FBCE\)là hình thang

Xét hình thang FBCE có :

\(NK\text{//}FB\text{//}FC\)

\(K\)là trung điểm BC

\(\Rightarrow NK\)là đường trung bình hình thang, hay N là trung điểm FE, tức N nằm trên EF

Vậy ...

c) \(AB=\frac{3}{2}AD\) nên đặt \(AD=2\alpha;AB=3\alpha\)

Ở phần a đã chứng minh \(\Delta AMD=\Delta AMF\Rightarrow AD=AF=2\alpha\)(2 cạnh tương ứng )

Xét tam giác EAF :  N là trung điểm FE ; M là trung điểm AE nên MN là đường trung bình

\(\Rightarrow MN=\frac{1}{2}AF=\frac{1}{2}\left(2\alpha\right)=\alpha\)

Vì góc A = 120o nên \(\widehat{FAM}=\frac{1}{2}.\widehat{A}=\frac{120^o}{2}=60^o\)

\(\Rightarrow\widehat{MFA}=90^o-\widehat{FAM}=30^o\)

Xét tam giác AMF vuông tại M có 2 góc nhọn là 60o và 30o \(\Rightarrow AM=\frac{1}{2}FA=\frac{1}{2}\left(2\alpha\right)=\alpha\)(Mình chứng minh bên dưới 

Mà \(AM=ME\Rightarrow ME=\alpha\)

Do ABCD là hình bình hành nên góc BCD cũng bằng góc A và bằng 120o

\(\Rightarrow\widehat{BCN}=\frac{1}{2}\widehat{C}=\frac{120^o}{2}=60^o\)

\(\Rightarrow\widehat{CBN}=90^o-\widehat{BCN}=30^o\)

Xét tam giác vuông BNC vuông tại N có 2 góc nhọn là 30o và 60o nên \(NC=\frac{1}{2}BC=\frac{1}{2}AD=\frac{1}{2}\left(2\alpha\right)=\alpha\)

AFED là hình thoi nên \(FA=DE=2\alpha\)

Lại có \(CD=AB=3\alpha\)

\(\Rightarrow CD-DE=EC=3\alpha-2\alpha=\alpha\)

Tứ giác \(MNCE\)có 4 cạnh bằng nhau và bằng \(\alpha\) nên là hình thoi.

Vậy ...

3 tháng 11 2016

À quên :) Cách chứng minh một tam giác vuông có một góc 60 độ / 30 độ thì cạnh góc vuông nhỏ hơn sẽ bằng nửa cạnh huyền.

S P Q J 60 30

Xét tam giác SQP vuông tại Q và \(\widehat{P}=60^o;\widehat{S}=30^o\)

Trên tia đối của QP, lấy J sao cho JQ=QP.

Xét \(\Delta SJP\)có \(SQ\)vừa là đường cao, vừa là trung tuyến nên là tam giác cân, lại có  \(\widehat{S}=60^o\)nên là tam giác đều.

\(\Rightarrow JP=SQ\)

\(\Rightarrow2.QP=SQ\)

\(\Rightarrow SQ=\frac{1}{2}SQ\)

Vậy ...