Cho tam giác ABC vuông tại A.Kẻ AH vuông góc với BC.Chứng minh rằng:
a) AC2 = CH . BC
b)AH2 = BH . CH
Sử dụng định lý Pitago nhé!Làm ơn giúp vs ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=CH\cdot CB\)(hệ thức lượng)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(HA^2=HB\cdot HC\)(hệ thức lượng)
a) Xét ΔABH và ΔABC ta có:
\(\widehat{AHB}=\widehat{BAC}\)
\(\widehat{B}\) chung
→ΔABH ∼ ΔABC(g-g)(1)
\(\rightarrow\dfrac{AB}{AH}=\dfrac{BC}{AC}\)
\(\Rightarrow AB.AC=AH.BC\)
b) Vì ΔABH ∼ ΔABC (cmt)
\(\rightarrow\dfrac{AC}{HC}=\dfrac{BC}{AC}\)
\(\rightarrow AC.AC=HC.BC\)
\(\Rightarrow AC^2=HC.BC\)
c) Xét ΔAHC và ΔABC ta có:
\(\widehat{C}\) chung
\(\widehat{AHC}=\widehat{BAC}=90^0\)
→ΔAHC ∼ ΔABC(g-g)(2)
Từ (1) và (2)→ΔABH ∼ ΔAHC
\(\rightarrow\dfrac{AH}{HB}=\dfrac{HC}{AH}\)
\(\rightarrow AH.AH=HB.HC\)
\(\Rightarrow AH^2=HB.HC\)
Trong tam giác cân, đường vuông góc đồng thời là trung tuyến, xuất phát từ đỉnh đi qua trung điểm cạnh đối diện.
=> AH = CH = AC : 2 = 10 : 2 = 5 ( cm)
Học tốt!
\(AB^2=AH^2+BH^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\left(Pitago\right)\)
\(AC^2=AH^2+CH^2\Rightarrow AH^2=AC^2-CH^2\left(2\right)\left(Pitago\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AC^2-CH^2=AB^2-BH^2\)
\(\Rightarrow AB^2+CH^2=AC^2+BH^2\)
\(\Rightarrow dpcm\)
Ta có \(AB^2-AC^2=\left(BH^2+AH^2\right)-\left(CH^2+AH^2\right)\) \(=BH^2-CH^2\) \(\Rightarrow AB^2+CH^2=AC^2+BH^2\), đpcm.
(Bài này kết quả vẫn đúng nếu không có điều kiện tam giác ABC vuông tại A.)
c: Xét ΔAHB vuông tại H có \(AE\cdot AB=AH^2\)
=>\(AE=\dfrac{AH^2}{AB}\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\)
=>\(AF=\dfrac{AH^2}{AC}\)
XétΔABC vuông tại A có
\(tanC=\dfrac{AB}{AC}\)
\(\dfrac{AF}{AE}=\dfrac{AH^2}{AC}:\dfrac{AH^2}{AB}=\dfrac{AB}{AC}=tanC\)
=>\(AF=AE\cdot tanC\)
a) Cm tamgiac ABC đồng dạng với tamgiac HBA(g.g)
=> AB/BC = BH/AB hay AB^2 = BH.HC
và cm tamgiac ABC đồng dạng với tamgiac HAC(g.g)
=> AC/BC = HC/AC hay AC^2 = CH.BH
a. Xét tg vuông ABC và tg vuông HBA có:
\(\widehat{ABH}\)chung
\(\Rightarrow\Delta ABC~\Delta HBA\)
\(\Rightarrow\frac{AB}{HB}=\frac{BC}{BA}\)
\(\Rightarrow AB^2=HB.BC\)
Cmtt:\(\Delta ABC~HAC\)
\(\Rightarrow\frac{AC}{HC}=\frac{BC}{AC}\)
\(\Rightarrow AC^2=BC.HC\)
b. lát làm tiếp nhá
tui làm được câu làm ny tớ nhé
Có t/g BAC đồng dạng với AHC ( góc góc )
suy ra \(\frac{BC}{AC}=\frac{AC}{HC}\)
Nhân chéo nó lên tao được
\(BC.HC=AC.AC\Leftrightarrow BC.HC=AC^2\) (1)
xét tiếp tam giác BHA đồng dạng với AHC ( góc góc )
suy ra \(\frac{BH}{AH}=\frac{HA}{HC}\) Lại nhân chéo nó lên tao được
\(BH.HC=AH.HA\Leftrightarrow BH.CH=AH^2\) (2)
từ 1 và 2 suy ra được Pain luôn đúng , làm ny anh nhé baby