Giải phương trình : \(\sqrt[3]{2-x}+\sqrt{x-1}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x>=1
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{1}{2}\left(x+3\right)\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=\dfrac{1}{2}\left(x+3\right)\)
=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\dfrac{1}{2}\left(x+3\right)\)
=>\(\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=\dfrac{1}{2}\left(x+3\right)\)
TH1: \(x>=2\)
PT sẽ tương đương với \(\sqrt{x-1}+1+\sqrt{x-1}-1=\dfrac{1}{2}\left(x+3\right)\)
=>\(2\sqrt{x-1}=\dfrac{1}{2}\left(x+3\right)\)
=>\(4\sqrt{x-1}=x+3\)
=>\(\sqrt{16x-16}=x+3\)
=>x>=-3 và (x+3)^2=16x-16
=>x>=-3 và x^2+6x+9-16x+16=0
=>x>=-3 và x^2-7x+25=0
=>Loại
TH2: 1<=x<2
PT sẽ là \(\sqrt{x-1}+1+1-\sqrt{x-1}=\dfrac{1}{2}\left(x+3\right)\)
=>1/2(x+3)=2
=>x+3=4
=>x=1(nhận)
ĐKXĐ: \(x\ge1\)
Ta có:
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\dfrac{x+3}{2}\\ \Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=\dfrac{x+3}{2}\\ \Leftrightarrow\sqrt{x-1}+\left|\sqrt{x-1}-1\right|=\dfrac{x+1}{2}\left(1\right)\)
Ta xét 2 trường hợp sau:
TH1: \(x\ge2\)
Khi đó:
\(\left(1\right)\Leftrightarrow2\sqrt{x-1}-1=\dfrac{x+1}{2}\\ \Leftrightarrow2\sqrt{x-1}=\dfrac{x+3}{2}\\ \Leftrightarrow16\left(x-1\right)=x^2+6x+9\\ \Leftrightarrow x^2-10x+25=0\\ \Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\left(TMĐK\right)\)
TH2: \(1\le x< 2\)
Khi đó:
\(\left(1\right)\Leftrightarrow1=\dfrac{x+1}{2}\Leftrightarrow x=1\left(TMĐK\right)\)
Vậy x=1 hoặc x=5
Đặt căn x=a; căn 1-x=b
Theo đề, ta có: a+b=1+2/3ab
=>3a+3b=3+2ab
=>3a+3b-2ab=3
=>a(3-2b)+3b-4,5=-1,5
=>-a(2b-3)+3(b-1,5)=-1,5
=>-2a(b-1,5)+3(b-1,5)=-1,5
=>(-2a+3)(b-1,5)=-1,5
=>(2a-3)(b-1,5)=1,5
=>(2a-3)(2b-3)=3
=>(2a-3;2b-3) thuộc {(1;3); (3;1);(-1;-3); (-3;-1)}
=>(a,b) thuộc {(2;3); (3;2); (1;0); (0;1)}
TH1: a=2; b=3
=>căn x=2 và căn 1-x=3
=>x=4 và 1-x=9
=>Loại
TH2: a=3 và b=2
=>căn x=3 và căn 1-x=2
=>x=9 và 1-x=4(loại)
TH3: a=1 và b=0
=>x=1 và 1-x=0
=>x=1
TH4: a=0 và b=1
=>x=0 và 1-x=1
=>x=0
Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$
$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$
$\Leftrightarrow x-2=0$ hoặc $4-x=0$
$\Leftrightarrow x=2$ hoặc $x=4$ (tm)
Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$
$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$
Với $4x^3-3x^2+6x-4=0(*)$
Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$
Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:
$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$
Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)
Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)
1) \(\sqrt{x^2+1}=\sqrt{5}\)
\(\Leftrightarrow x^2+1=5\)
\(\Leftrightarrow x^2=5-1\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x^2=2^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
2) \(\sqrt{2x-1}=\sqrt{3}\) (ĐK: \(x\ge\dfrac{1}{2}\))
\(\Leftrightarrow2x-1=3\)
\(\Leftrightarrow2x=3+1\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=\dfrac{4}{2}\)
\(\Leftrightarrow x=2\left(tm\right)\)
3) \(\sqrt{43-x}=x-1\) (ĐK: \(x\le43\))
\(\Leftrightarrow43-x=\left(x-1\right)^2\)
\(\Leftrightarrow x^2-2x+1=43-x\)
\(\Leftrightarrow x^2-x-42=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\x=-6\left(tm\right)\end{matrix}\right.\)
4) \(x-\sqrt{4x-3}=2\) (ĐK: \(x\ge\dfrac{3}{4}\))
\(\Leftrightarrow\sqrt{4x-3}=x-2\)
\(\Leftrightarrow4x-3=\left(x-2\right)^2\)
\(\Leftrightarrow x^2-4x+4=4x-3\)
\(\Leftrightarrow x^2-8x+7=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
5) \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{1}{2}\) (ĐK: \(x\ge0\))
\(\Leftrightarrow\sqrt{x}+3=2\sqrt{x}+2\)
\(\Leftrightarrow2\sqrt{x}-\sqrt{x}=3-2\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1^2\)
\(\Leftrightarrow x=1\left(tm\right)\)
1)
\(\sqrt{x^2+1}=\sqrt{5}\\ \Leftrightarrow x^2+1=5\\ \Leftrightarrow x^2=5-1=4\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy PT có nghiệm `x=2` hoặc `x=-2`
2)
ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\sqrt{2x-1}=\sqrt{3}\\ \Leftrightarrow2x-1=3\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\left(tm\right)\)
Vậy PT có nghiệm `x=2`
3)
\(ĐKXĐ:x\le43\)
PT trở thành:
\(43-x=\left(x-1\right)^2=x^2-2x+1\\ \Leftrightarrow43-x-x^2+2x-1=0\\ \Leftrightarrow-x^2+x+42=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)
Vậy PT có nghiệm `x=-6` hoặc `x=7`
4)
ĐKXĐ: \(x\ge\dfrac{3}{4}\)
PT trở thành:
\(\sqrt{4x-3}=x-2\\ \Leftrightarrow4x-3=\left(x-2\right)^2=x^2-4x+4\\ \Leftrightarrow4x-3-x^2+4x-4=0\\ \Leftrightarrow-x^2+8x-7=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)
Vậy PT có nghiệm \(x=1\) hoặc \(x=7\)
5)
ĐKXĐ: \(x\ge0\)
PT trở thành:
\(\sqrt{x+3}=2\sqrt{x}+2\\ \Leftrightarrow x+3=\left(2\sqrt{x}+2\right)^2=4x+8\sqrt{x}+4\\ \Leftrightarrow x+3-4x-8\sqrt{x}-4=0\\ \Leftrightarrow-3x-8\sqrt{x}-1=0\left(1\right)\)
Đặt \(\sqrt{x}=t\left(t\ge0\right)\)
Khi đó:
(1)\(\Leftrightarrow3t^2+8t+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-4+\sqrt{13}}{3}\left(loại\right)\\t=\dfrac{-4-\sqrt{13}}{3}\left(loại\right)\end{matrix}\right.\)
Vậy PT vô nghiệm.
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
\(1,\sqrt{x+2+4\sqrt{x-2}}=5\left(x\ge2\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-2}+4\right)^2}=5\\ \Leftrightarrow\sqrt{x-2}+4=5\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\Leftrightarrow x=3\\ 2,\sqrt{x+3+4\sqrt{x-1}}=2\left(x\ge1\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+4\right)^2}=2\\ \Leftrightarrow\sqrt{x-1}+4=2\\ \Leftrightarrow\sqrt{x-1}=-2\\ \Leftrightarrow x\in\varnothing\left(\sqrt{x-1}\ge0\right)\)
\(3,\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\left(x\ge\dfrac{1}{2};x\ne1\right)\\ \Leftrightarrow x+\sqrt{2x-1}=2\\ \Leftrightarrow x-2=-\sqrt{2x-1}\\ \Leftrightarrow x^2-4x+4=2x-1\\ \Leftrightarrow x^2-6x+5=0\\ \Leftrightarrow\left(x-5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=1\left(loại\right)\end{matrix}\right.\)
\(4,\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}=6\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}=6\\ \Leftrightarrow\sqrt{2x-5}+1=6\\ \Leftrightarrow\sqrt{2x-5}=5\\ \Leftrightarrow2x-5=25\Leftrightarrow x=15\left(TM\right)\)
ĐKXĐ: \(\left\{{}\begin{matrix}-1\le x\le3\\x\ne1\end{matrix}\right.\)
\(\dfrac{\sqrt{x+1}\left(\sqrt{x+1}+\sqrt{3-x}\right)}{2\left(x-1\right)}>x-\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{x+1+\sqrt{-x^2+2x+3}}{x-1}>2x-1\)
- TH1: Với \(x>1\) BPT tương đương:
\(x+1+\sqrt{-x^2+2x+3}>\left(2x-1\right)\left(x-1\right)\)
\(\Leftrightarrow\sqrt{-x^2+2x+3}>2x^2-4x\)
Đặt \(\sqrt{-x^2+2x+3}=t\ge0\Rightarrow2x^2-4x=-2t^2+6\)
BPt trở thành: \(t>-2t^2+6\Leftrightarrow2t^2+t-6>0\)
\(\Rightarrow t>\dfrac{3}{2}\Rightarrow-x^2+2x+3>\dfrac{9}{4}\Rightarrow1< x< \dfrac{2+\sqrt{7}}{2}\)
TH2: với \(x< 1\) BPT tương đương:
\(x+1+\sqrt{-x^2+2x+3}< \left(2x-1\right)\left(x-1\right)\)
\(\Leftrightarrow\sqrt{-x^2+2x+3}< 2x^2-4x\)
Tương tự như trên, đặt \(t=\sqrt{-x^2+2x+3}\ge0\) ta được \(0\le t< \dfrac{3}{2}\)
\(\Rightarrow-x^2+2x+3< \dfrac{9}{4}\) \(\Rightarrow-1\le x< \dfrac{2-\sqrt{7}}{2}\)
Vậy nghiệm của BPT là: \(\left[{}\begin{matrix}-1\le x< \dfrac{2-\sqrt{7}}{2}\\1< x< \dfrac{2+\sqrt{7}}{2}\end{matrix}\right.\)
1) \(\dfrac{x+2\sqrt[]{x}}{\sqrt[]{x}-1}=8\left(1\right)\)
Điều kiện \(\left\{{}\begin{matrix}x\ge0\\\sqrt[]{x}-1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x+2\sqrt[]{x}=8\left(\sqrt[]{x}-1\right)\)
\(\Leftrightarrow x-6\sqrt[]{x}+8=0\left(2\right)\)
Đặt \(t^2=x\Leftrightarrow t=\sqrt[]{x}\)
\(\left(2\right)\Leftrightarrow t^2-6t+8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt[]{x}=2\\\sqrt[]{x}=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=16\end{matrix}\right.\) (thỏa điều kiện)
2) \(\sqrt[]{\dfrac{2x-3}{x-1}}=2\left(1\right)\)
Điều kiện \(\dfrac{2x-3}{x-1}\ge0\Leftrightarrow\left[{}\begin{matrix}x< 1\\x\ge\dfrac{3}{2}\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\dfrac{2x-3}{x-1}=4\)
\(\Leftrightarrow2x-3=4\left(x-1\right)\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\) (thỏa điều kiện)
Đk : x >= 1
Đặt : \(\sqrt[3]{2-x}=a\) ; \(\sqrt{x-1}=b\)=> a^3+b^2 = 1 (1)
pt => a+b = 1 => b = 1-a
Thay b=1-a vào (1) thì:
1 = a^3+a^2-2a+1
<=> a^3+a^2-2a = 0
<=> a.(a^2+a-2) = 0
<=> a=0 hoặc a^2+a-2 = 0
<=> a=0 hoặc x=1 hoặc a=-2
<=> \(\sqrt[3]{2-x}=0\)hoặc \(\sqrt[3]{2-x}\)= 1 hoặc \(\sqrt[3]{2-x}\)= -2
<=> x=2 hoặc x=1 hoặc x=-10
<=> x=2 hoặc x=1 ( vì x >= 1 )
Vậy pt có tập nghiệm S = {1;2}
Tk mk nha
x=10 cũng thỏa mãn bạn nhé