K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2022

ĐKXĐ : \(1\le x\le3\)

Ta có \(\sqrt{x-1}+\sqrt{3-x}+4x\sqrt{2x}\ge x^3+10\)

<=> \(-2\sqrt{x-1}-2\sqrt{3-x}-8x\sqrt{2x}\le-2x^3-20\)

<=> \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+2x^3-8x\sqrt{2x}+16\le0\)(1)

Đặt \(\sqrt{2x}=y\) => \(x=\dfrac{y^2}{2}\)

Khi đó \(2x^3-8x\sqrt{2x}+16=\dfrac{y^6}{4}-4y^3+16=\left(\dfrac{y^3-8}{2}\right)^2\)

Khi đó (1) <=> \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2\le0\)(1)

mà \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2\ge0\forall x;y\)(2) 

Từ (2)(1) => \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2=0\)

<=> \(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{3-x}-1=0\\\dfrac{y^3-8}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\3-x=1\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=2\\\sqrt{2x}=2\end{matrix}\right.\Leftrightarrow x=2\)

Vậy x = 2 là nghiệm bất phương trình

Câu 4:

Giả sử điều cần chứng minh là đúng

\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:

\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)

Vậy điều cần chứng minh là đúng

3 tháng 2 2021

2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)

⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)

⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)

⇔ x = 5

Vậy S = {5}