S=1/1+2 + 1/1+2+3 + ...+ 1/1+2+3+....+2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2.S=2.\left(\frac{1}{1^4+1^2+1}+...+\frac{2011}{2011^4+2011^2+1}\right)\)
Xét hạng tử tống quát: \(\frac{2.n}{n^4+n^2+1}=\frac{2.n}{\left(n^4+2n^2+1\right)-n^2}=\frac{\left(n^2+n+1\right)-\left(n^2-n+1\right)}{\left(n^2-n+1\right)\left(n^2+n+1\right)}\)\(=\frac{1}{n^2-n+1}-\frac{1}{n^2+n+1}\)
Từ đó: \(\frac{2.1}{1^4+1^2+1}=\frac{1}{1}-\frac{1}{3}\)
\(\frac{2.2}{2^4+2^2+1}=\frac{1}{3}-\frac{1}{7}\)
.....
\(\frac{2.2011}{2011^4+2011^2+1}=\frac{1}{4042111}-\frac{1}{4046133}\)
Từ đó => 2.S= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{7}+...+\frac{1}{4042111}-\frac{1}{4046133}\)=\(1-\frac{1}{4046133}\)=\(\frac{4046132}{4046133}\)
=> S\(=\frac{2023066}{4046133}\)
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2011}}+\dfrac{1}{3^{2012}}\)
\(3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2010}}+\dfrac{1}{3^{2011}}\)
\(3A-A=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2010}}+\dfrac{1}{3^{2011}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2011}}+\dfrac{1}{3^{2012}}\right)\)
\(2A=1-\dfrac{1}{3^{2012}}\Leftrightarrow A=\dfrac{1}{2}-\dfrac{1}{3^{2012}.2}< \dfrac{1}{2}\)
a) Giải
Ta có: \(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}+\dfrac{1}{2^{2013}}\)
\(\Rightarrow2S=\dfrac{2}{2}+\dfrac{2}{2^2}+\dfrac{2}{2^3}+...+\dfrac{2}{2^{2012}}+\dfrac{2}{2^{2013}}\)
\(2S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}\)
\(\Rightarrow2S-S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{2012}}-\dfrac{1}{2^{2013}}\)
\(\Rightarrow S=1-\dfrac{1}{2^{2013}}\)
\(\Rightarrow S=\dfrac{2^{2013}-1}{2^{2013}}\)
b) Giải
Từ \(A=\dfrac{2011^{2012}+1}{2011^{2013}+1}\)
\(\Rightarrow2011A=\dfrac{2011^{2013}+20111}{2011^{2013}+1}=\dfrac{2011^{2013}+1+2010}{2011^{2013}+1}=1+\dfrac{2010}{2011^{2013}+1}\)
Từ \(B=\dfrac{2011^{2013}+1}{2011^{2014}+1}\)
\(\Rightarrow2011B=\dfrac{2011^{2014}+2011}{2011^{2014}+1}=\dfrac{2011^{2014}+1+2010}{2011^{2014}+1}=1+\dfrac{2010}{2011^{2014}+1}\)
Vì 20112013 + 1 < 20112014 + 1 và 2010 > 0
\(\Rightarrow\dfrac{2010}{2011^{2013}+1}>\dfrac{2010}{2011^{2014}+1}\)
\(\Rightarrow2011A>2011B\)
\(\Rightarrow A>B\)
Vậy A > B.