Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\dfrac{1}{2011}+\dfrac{2012.2010}{2011}-2012\)=\(\dfrac{1+2012.2010-2012.2011}{2011}\)
= \(\dfrac{1+2012.\left(2010-2011\right)}{2011}\)= \(\dfrac{1+2012.\left(-1\right)}{2011}\)
= \(\dfrac{-2011}{2011}=-1\)
a) Giải
Ta có: \(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}+\dfrac{1}{2^{2013}}\)
\(\Rightarrow2S=\dfrac{2}{2}+\dfrac{2}{2^2}+\dfrac{2}{2^3}+...+\dfrac{2}{2^{2012}}+\dfrac{2}{2^{2013}}\)
\(2S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}\)
\(\Rightarrow2S-S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{2012}}-\dfrac{1}{2^{2013}}\)
\(\Rightarrow S=1-\dfrac{1}{2^{2013}}\)
\(\Rightarrow S=\dfrac{2^{2013}-1}{2^{2013}}\)
b) Giải
Từ \(A=\dfrac{2011^{2012}+1}{2011^{2013}+1}\)
\(\Rightarrow2011A=\dfrac{2011^{2013}+20111}{2011^{2013}+1}=\dfrac{2011^{2013}+1+2010}{2011^{2013}+1}=1+\dfrac{2010}{2011^{2013}+1}\)
Từ \(B=\dfrac{2011^{2013}+1}{2011^{2014}+1}\)
\(\Rightarrow2011B=\dfrac{2011^{2014}+2011}{2011^{2014}+1}=\dfrac{2011^{2014}+1+2010}{2011^{2014}+1}=1+\dfrac{2010}{2011^{2014}+1}\)
Vì 20112013 + 1 < 20112014 + 1 và 2010 > 0
\(\Rightarrow\dfrac{2010}{2011^{2013}+1}>\dfrac{2010}{2011^{2014}+1}\)
\(\Rightarrow2011A>2011B\)
\(\Rightarrow A>B\)
Vậy A > B.
\(A=\dfrac{2011^{2011}+2}{2011^{2011}-1}=\dfrac{2011^{2011}-1+3}{2011^{2011}-1}=\dfrac{2011^{2011}-1}{2011^{2011}-1}+\dfrac{3}{2011^{2011}-1}=1+\dfrac{3}{2011^{2011}-1}\left(1\right)\)
\(B=\dfrac{2011^{2011}}{2011^{2011}-3}=\dfrac{2011^{2011}-3+3}{2011^{2011}-3}=\dfrac{2011^{2011}}{2011^{2011}}+\dfrac{3}{2011^{2011}-3}=1+\dfrac{3}{2011^{2011}-3}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A< B\)
1+\(\dfrac{3}{2011^{2011}-1}\)>1+\(\dfrac{3}{2011^{2011}-3}\)mà
1)\(\dfrac{-5}{2}:\dfrac{1}{4}\) = \(\dfrac{-5}{2}\) x \(\dfrac{4}{1}\) = \(\dfrac{-20}{2}\)
\(A=1+\dfrac{\dfrac{\left(1+2\right).2}{2}}{2}+\dfrac{\dfrac{\left(1+3\right).3}{2}}{3}+...+\dfrac{\dfrac{\left(1+2013\right).2013}{2}}{2013}\)
\(A=1+\dfrac{\dfrac{3.2}{2}}{2}+\dfrac{\dfrac{4.3}{2}}{3}+...+\dfrac{\dfrac{2014.2013}{2}}{2013}\)
\(A=1+\dfrac{3}{2}+\dfrac{2.3}{3}+...+\dfrac{1007.2013}{2013}\)
\(A=1+\dfrac{3}{2}+2+\dfrac{5}{2}...+1007\)
\(2A=2+3+4+5+6+...+2012+2013+2014\)
\(2A=\dfrac{\left(2+2014\right).2013}{2}\)
\(A=\dfrac{2016.2013}{4}=504.2013\)
\(B=\dfrac{-2}{1.3}+\dfrac{-2}{2.4}+...+\dfrac{-2}{2012.2014}+\dfrac{-2}{2013.2015}\)
\(-B=\dfrac{2}{1.3}+\dfrac{2}{2.4}+...+\dfrac{2}{2012.2014}+\dfrac{2}{2013.2015}\)
\(-B=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2012.2014}\right)\)
\(-B=\left(\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{2015-2013}{2013.2015}\right)+\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2014-2012}{2012.2014}\right)\)
\(-B=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{2013}-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}+...+\dfrac{1}{2012}-\dfrac{1}{2014}\right)\)
\(-B=\left(1-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2014}\right)\)
\(-B=\dfrac{2014}{2015}+\dfrac{2012}{2014.2}=\dfrac{2014^2+1006.2015}{2015.2014}\)
\(B=\dfrac{2014^2+1006.2015}{-2015.2014}\)
Đặt \(B=A\div C\)
\(C=2012+\dfrac{2011}{2}+...+\dfrac{1}{2012}=2012+\dfrac{2013-2}{2}+\dfrac{2013-3}{3}+...+\dfrac{2013-2012}{2012}\)
\(C=2012+\dfrac{2013}{2}+\dfrac{2013}{3}+...+\dfrac{2013}{2012}-1-1-...-1\)
\(C=2012+2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)-2011\)
\(C=1+2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)=\dfrac{2013}{2013}+2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)\)
\(C=2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)=2013.A\)
\(\Rightarrow B=\dfrac{A}{C}=\dfrac{1}{2013}\)
a) \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
\(\Rightarrow\)\(2^x+2^x.2+2^x.2^2+2^x.2^3=480\)
\(\Leftrightarrow\)\(2^x\left(1+2+2^2+2^3\right)=480\)
\(\Leftrightarrow\)\(2^x\left(1+2+4+8\right)=480\)
\(\Leftrightarrow\)\(2^x.15=480\)
\(\Rightarrow\)\(2^x=480:15\)
\(\Leftrightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
Vậy x = 5.