CHO TAM GIÁC ABC CÓ GÓC A = 2B = 2C
CMR ABC VUÔNG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\hept{\begin{cases}A=2B\\2C=3B\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{A}{2}=\frac{B}{1}\\\frac{C}{3}=\frac{B}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{A}{4}=\frac{B}{2}\\\frac{C}{3}=\frac{B}{2}\end{cases}\Leftrightarrow}\frac{A}{4}=\frac{B}{2}=\frac{C}{3}}\)
Áp dụng TC của dãy tỉ số bằng nhau , ta có :
\(\frac{A}{4}=\frac{B}{2}=\frac{C}{3}=\frac{A+B+C}{4+2+3}=\frac{180}{9}=20\)
\(\Rightarrow\hept{\begin{cases}A=20.4=80^o\\B=20.2=40^o\\C=20.3=60^o\end{cases}}\)
\(\left\{{}\begin{matrix}sinA=\dfrac{a}{2R}\\sinB=\dfrac{b}{2R}\\sinC=\dfrac{c}{2R}\end{matrix}\right.\) \(\Rightarrow sin^2A+sin^2B=\dfrac{a^2+b^2}{4R^2}=\dfrac{9+36}{4R^2}=\dfrac{45}{4R^2}\)
Trong khi đó \(3sin^2C=\dfrac{3.17}{4R^2}=\dfrac{51}{4R^2}\)
Đề bài sai
Ta có tổng 3 góc của 1 tam giác là 180 độ
Vì a=2b và b=2c nên c=36 độ
b=72 độ
a=72 độ
nên 1/a+1/b=1/c
+)ΔABC vuông tại A \(\Rightarrow\widehat{A}=90^o\)
+)Áp dụng định lý tổng ba góc trong tam giác vào tam giác ABC, ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(=>90^o+40^o+\widehat{C}=180^o\)
\(=>\widehat{C}=180^o-90^o-40^o=50^o\)
Vậy \(\widehat{C}=50^o\)
------------------------------------------
+)Tam giác ABC vuông tại B \(\Rightarrow\widehat{B}=90^o\)
+)\(\widehat{A}=2.\widehat{C}\Rightarrow\widehat{A}+\widehat{C}=2.\widehat{C}+\widehat{C}=3.\widehat{C}\)
+)Áp dụng định lý tổng ba góc trong tam giác vào tam giác ABC, ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}+90^o+\widehat{C}=180^o\)
\(=>\widehat{A}+\widehat{C}=180^o-90^o\)
\(=>3.\widehat{C}=90^o\)
\(=>\widehat{C}=\dfrac{90^o}{3}=30^o\)
+)\(\widehat{A}=2.\widehat{C}\Rightarrow\widehat{A}=2.30^o=60^o\)
Vậy: \(\widehat{A}=60^o\) ; \(\widehat{C}=30^o\)
1: góc C=90-40=50 độ
2: góc A=2/3*90=60 độ
góc C=90-60=30 độ
2B = 2C \(\Rightarrow\)\(\widehat{B}=\widehat{C}\)
xét \(\Delta ABC\)có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)( theo định lí tổng 3 góc của 1 tam giác )
hay \(2\widehat{B}+\widehat{B}+\widehat{B}=180^o\)
\(\Rightarrow4\widehat{B}=180^o\)
\(\Rightarrow\widehat{B}=45^o\)
Từ đó ta tính được : \(\widehat{A}=2.45^o=90^o\)
Vậy \(\Delta ABC\)vuông tại A