Tam giác ABC có ABAC. Gọi M là 1 điểm nằm trong Tam giácsao cho MB MC; N là trung điểm của cạnh BC. Chứng minh:
a, AM là tia phân giác của ABC
b, 3 điểm AMN thẳng hàng
c, MN là đường trung trực của đọan thẳng BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét t/g AME và t/g DMB có:
AM=DM (gt)
AME=DMB ( đối đỉnh)
ME=MB (gt)
Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)
b) t/g AME = t/g DMB (câu a)
=> AE=BD (2 cạnh tương ứng) (1)
AEM=DBM (2 góc tương ứng)
Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)
(1) và (2) là đpcm
c) Xét t/g AKE và t/g CKD có:
AEK=CDK (so le trong)
AE=CD ( cùng = BD)
EAK=DCK (so le trong)
Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)
d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)
=> AF = DC (2 cạnh tương ứng)
AFM=DCM (2 góc tương ứng)
Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC
Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)
Mà AF=DC=BD=AE (4)
Từ (3) và (4) => A là trung điểm của EF (đpcm)
a) Xét tam giác MDC, theo bất đẳng thức trong tam giác ta có:
MC < MD + DC
Vậy thì DB + DC = BM + MD + DC > BM + CM
b) Xét tam giác ABD, áp dụng bất đẳng thức trong tam giác thì AB + AD > BD
Vậy nên AB + AC = AB + AD + DC > BD + DC
Lại theo câu a thì DB + DC > BM + CM
Vậy nên AB + AC > BM + CM
c) Chứng minh tương tự ta có các khẳng đỉnh sau:
AB + BC > MA + MC
BC + AC > MB + MA
Cộng vế với 3 bất đẳng thức ta có:
2(AB + BC + CA) > 2(MA + MB + MC)
\(\Rightarrow MA+MB+MC< AB+BC+CA.\)
Bài giải :
a) Xét tam giác MDC, theo bất đẳng thức trong tam giác ta có:
MC < MD + DC
Vậy thì DB + DC = BM + MD + DC > BM + CM
b) Xét tam giác ABD, áp dụng bất đẳng thức trong tam giác thì AB + AD > BD
Vậy nên AB + AC = AB + AD + DC > BD + DC
Lại theo câu a thì DB + DC > BM + CM
Vậy nên AB + AC > BM + CM
c) Chứng minh tương tự ta có các khẳng đỉnh sau:
AB + BC > MA + MC
BC + AC > MB + MA
Cộng vế với 3 bất đẳng thức ta có:
2(AB + BC + CA) > 2(MA + MB + MC)
⇒MA+MB+MC<AB+BC+CA.