K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1

16 tháng 1 2022

\(\dfrac{-3}{4}=\dfrac{x}{20}\Rightarrow x=\dfrac{-3}{4}.20\Rightarrow x=-15\)

\(-\dfrac{3}{4}=\dfrac{21}{y}\Rightarrow y=21:\left(-\dfrac{3}{4}\right)\Rightarrow y=-28\)

16 tháng 1 2022

\(\dfrac{-3}{4}\)=\(\dfrac{X}{20}\)⇒x=\(\dfrac{-3}{4}\).20⇒x=\(-15\)

\(\dfrac{-3}{4}\)=\(\dfrac{21}{y}\)⇒y=21:\(\left(-\dfrac{3}{4}\right)\)\(y\)=\(-28\)

24 tháng 4 2023

\(xy-\left(x+2y\right)=3\)
\(xy-x-2y=3\)
\(y\left(x-2\right)-x=3\)
\(y\left(x-2\right)-x+2=3+2\)
\(y\left(x-2\right)-\left(x-2\right)=5\)
\(\left(y-1\right)\left(x-2\right)=5\)
Ta có bảng sau:

\(y-1\)\(1\)\(5\)\(-1\)\(-5\)
\(x-2\)\(5\)\(1\)\(-5\)\(-1\)
\(y\)\(2\)\(6\)\(0\)\(-4\)
\(x\)\(7\)\(3\)\(-3\)\(1\)

Vậy các cặp \(\left(x;y\right)\) là \(\left(7;2\right);\left(3;6\right);\left(-3;0\right);\left(1;-4\right)\)

=>xy-x-2y=3

=>x(y-1)-2y+2=5

=>(x-2)(y-1)=5

=>\(\left(x-2;y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(3;6\right);\left(7;3\right);\left(1;-4\right);\left(-3;0\right)\right\}\)

24 tháng 3 2018

a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.

Giả sử số lẻ đó là x thì ta có

\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)

\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)

\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)

Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm

24 tháng 3 2018

b/ \(9x^2+2=y^2+y\)

\(\Leftrightarrow36x^2+8=4y^2+4y\)

\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)

\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)

27 tháng 6 2015

x, y nguyên thì |x+4| và |y-2| cũng là số nguyên.

+) vì |x+4| và |y-2| luôn lớn hơn hoặc bằng 0 nên  để thỏa mãn bài toán thì chỉ xảy ra các trường hợp sau

+) TH1: |x+4| = 3  và |y-2| = 0 <=> x = -1 hoặc x = -7

và y = 2.

 ta có các cặp (x,y): (-1;2) , (-7; 2)

+) TH2: |x+4| = 2  và |y-2| = 1 <=> x = -2 hoặc x = -6 và y = 3 hoặc y = 1

ta có các cặp (x,y): (-2;1) , (-2; 3) , (-6;1) , (-6;3)

+) TH3: |x+4| = 1  và |y-2| = 2 <=> x = -3 hoặc x = -5 và y = 4 hoặc y = 0

ta có các cặp (x,y): (-3;4) , (-3; 0) ; (-5; 0) ; (-5;4)

+) TH4: |x+4| = 0  và |y-2| = 3 <=> x = -4 và y = -1 hoặc y = 5

ta có các cặp (x,y): (-4;-1) , (-4; 5)

Vậy có các cặp (x;y) thỏa mãn điều kiện là:(-1;2) , (-7; 2), (-2;1) , (-2; 3) , (-6;1) , (-6;3), (-3;4) , (-3; 0) ; (-5; 0) ; (-5;4), (-4;-1) , (-4; 5)

27 tháng 3 2016

KO TỀM ĐC VÌ X NGUYÊN TỐ THÌ Y KO NGUYÊN TỐ .(CHƯA CHẮC ĐÃ DÚNG NHA)

Ta có \(y^2+y=x^4+x^3+x^2+x\)

\(\Leftrightarrow\left(2y+1\right)^2=4x^4+4x^3+4x^2+x+1\)

Nếu \(\left(2y+1\right)^2< \left(2x^2+x\right)^2\Rightarrow3x^2+4x+1< 0\Rightarrow\frac{-1}{3}< x< -1\)vô lí

Vậy \(\left(2y+1\right)^2\ge\left(2x^2+x\right)^2\)mặt khác\(\left(2y+1\right)^2< \left(2x^2+x+2\right)^2\)nên theo điều kiện chặn ta sẽ tìm được x;y thỏa mãn