tìm số nguyên x y thoả mãn:-3/4 = x/20 = 21/y
sos bài 6.6 SBT toán 6 Kết Nối Tri Thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{-3}{4}=\dfrac{x}{20}\Rightarrow x=\dfrac{-3}{4}.20\Rightarrow x=-15\)
\(-\dfrac{3}{4}=\dfrac{21}{y}\Rightarrow y=21:\left(-\dfrac{3}{4}\right)\Rightarrow y=-28\)
\(\dfrac{-3}{4}\)=\(\dfrac{X}{20}\)⇒x=\(\dfrac{-3}{4}\).20⇒x=\(-15\)
\(\dfrac{-3}{4}\)=\(\dfrac{21}{y}\)⇒y=21:\(\left(-\dfrac{3}{4}\right)\)⇒\(y\)=\(-28\)
tìm cặp số nguyên x,y thoả mãn :
a) 3|x-5|+|y+4|=5
b) |x+6|+4|y-1|=12
c) 2|3|+|y+3|=10
d) 3|4x|+|y+3|=21
\(xy-\left(x+2y\right)=3\)
\(xy-x-2y=3\)
\(y\left(x-2\right)-x=3\)
\(y\left(x-2\right)-x+2=3+2\)
\(y\left(x-2\right)-\left(x-2\right)=5\)
\(\left(y-1\right)\left(x-2\right)=5\)
Ta có bảng sau:
\(y-1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(x-2\) | \(5\) | \(1\) | \(-5\) | \(-1\) |
\(y\) | \(2\) | \(6\) | \(0\) | \(-4\) |
\(x\) | \(7\) | \(3\) | \(-3\) | \(1\) |
Vậy các cặp \(\left(x;y\right)\) là \(\left(7;2\right);\left(3;6\right);\left(-3;0\right);\left(1;-4\right)\)
=>xy-x-2y=3
=>x(y-1)-2y+2=5
=>(x-2)(y-1)=5
=>\(\left(x-2;y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(3;6\right);\left(7;3\right);\left(1;-4\right);\left(-3;0\right)\right\}\)
a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.
Giả sử số lẻ đó là x thì ta có
\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)
\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)
Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm
b/ \(9x^2+2=y^2+y\)
\(\Leftrightarrow36x^2+8=4y^2+4y\)
\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)
\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)
x, y nguyên thì |x+4| và |y-2| cũng là số nguyên.
+) vì |x+4| và |y-2| luôn lớn hơn hoặc bằng 0 nên để thỏa mãn bài toán thì chỉ xảy ra các trường hợp sau
+) TH1: |x+4| = 3 và |y-2| = 0 <=> x = -1 hoặc x = -7
và y = 2.
ta có các cặp (x,y): (-1;2) , (-7; 2)
+) TH2: |x+4| = 2 và |y-2| = 1 <=> x = -2 hoặc x = -6 và y = 3 hoặc y = 1
ta có các cặp (x,y): (-2;1) , (-2; 3) , (-6;1) , (-6;3)
+) TH3: |x+4| = 1 và |y-2| = 2 <=> x = -3 hoặc x = -5 và y = 4 hoặc y = 0
ta có các cặp (x,y): (-3;4) , (-3; 0) ; (-5; 0) ; (-5;4)
+) TH4: |x+4| = 0 và |y-2| = 3 <=> x = -4 và y = -1 hoặc y = 5
ta có các cặp (x,y): (-4;-1) , (-4; 5)
Vậy có các cặp (x;y) thỏa mãn điều kiện là:(-1;2) , (-7; 2), (-2;1) , (-2; 3) , (-6;1) , (-6;3), (-3;4) , (-3; 0) ; (-5; 0) ; (-5;4), (-4;-1) , (-4; 5)
Ta có \(y^2+y=x^4+x^3+x^2+x\)
\(\Leftrightarrow\left(2y+1\right)^2=4x^4+4x^3+4x^2+x+1\)
Nếu \(\left(2y+1\right)^2< \left(2x^2+x\right)^2\Rightarrow3x^2+4x+1< 0\Rightarrow\frac{-1}{3}< x< -1\)vô lí
Vậy \(\left(2y+1\right)^2\ge\left(2x^2+x\right)^2\)mặt khác\(\left(2y+1\right)^2< \left(2x^2+x+2\right)^2\)nên theo điều kiện chặn ta sẽ tìm được x;y thỏa mãn