tìm số tự nhiên y, biết 1/6+1/12+1/20+...+1/90=6/y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(y - 1/2) : (1/2 + 1/6 + 1/12 + ... + 1/90) = 1/3
(y - 1/2) : (1/1×2 + 1/2×3 + 1/3×4 + ... + 1/9×10) = 1/3
(y - 1/2) : (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/9 - 1/10) = 1/3
(y - 1/2) : (1 - 1/10) = 1/3
(y - 1/2) : 9/10 = 1/3
y - 1/2 = 1/3 × 9/10
y - 1/2 = 3/10
y = 3/10 + 1/2
y = 3/10 + 5/10
y =8/10 = 4/5
(y - \(\dfrac{1}{2}\)) : \(\left(\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\right)\)= \(\dfrac{1}{3}\)
(y\(-\dfrac{1}{2}\)): \(\left(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)= \(\dfrac{1}{3}\)
\(\left(y-\dfrac{1}{2}\right):\left(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{10}\right)=\dfrac{1}{3}\)
\(\left(y-\dfrac{1}{2}\right):\dfrac{3}{10}=\dfrac{1}{3}\)
\(\left(y-\dfrac{1}{2}\right)=\dfrac{1}{10}\)
y = \(\dfrac{3}{5}\)
BAI 1
ta co n+6 chia het cho n
ma n chia het cho n
suy ra 6 chia het cho n
ma n la mot so tu nhien nen
ta co n thuoc U(6)=1,2,3,6
vay n bang 1,2,3,6
bai 2
(2n-1).(y+3)=12
suy ra 2n-1 va y+3 thuoc uoc cua 12 =1,12,3,4,6,2
neu 2n-1 =1 suy ra n=1
thi y+3=12 suy ra y=9
neu 2n-1=12 suy ra n=11/2(ko thoa man )
neu 2n-1=3 suy ra n=2
thi y+3=4 suy ra y=1
neu 2n-1=4 ruy ra n=5/2( ko thoa man )
neu 2n-1=6 suy ra n=7/2( ko thoa man )
neu 2n-1=2 suy ra n=3/2 ( ko thoa man )
vay cac cap so n :y can tim la (2;1),(1;9)
a, x=1; y=2 => 12
x=2; y=1 => 21
b, x=1; y=5 => 15
x=5; y=1 => 51
c, x=1; y=6 => 16
x=6;y=1 => 61
x=2; y=3=> 23
x=3; y=2 => 32
d, x=1; y=8 => 18
x=2; y=4 => 24
x=4; y=2 => 42
x=8; y=1 => 81
=>1/1.2+1/2.3=1/3.4+........+1/x.(x+1)=2008/2009
=>1-1/2+1/2-1/3+.....+1/x-1/x+1=1-1/2009
=>1-1/x+1=1-1/2009
=>-1/x=-1/2009
=>1/x=1/2009
=>x=2009
Nhớ k cho mình nha
\(\left(y-\frac{1}{2}\right):\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)=\frac{1}{3}\)
\(\Leftrightarrow\left(y-\frac{1}{2}\right):\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{9}-\frac{1}{10}\right)=\frac{1}{3}\)
\(\Leftrightarrow\left(y-\frac{1}{3}\right):\left(1-\frac{1}{10}\right)=\frac{1}{3}\)
\(\Leftrightarrow\left(y-\frac{1}{2}\right):\frac{9}{10}=\frac{1}{3}\)
\(\Leftrightarrow\left(y-\frac{1}{2}\right)=\frac{3}{10}\)
\(\Leftrightarrow y=\frac{4}{5}\)
1/2+1/6+1/12+1/20+...+1/x(x+1)=2015/2016
1/1.2+1/2.3+1/3.4+.....+1/x.(x+1)=2015/2016
1-1/2+1/2-1/3+1/3-1/4+......+1/x-1/x+1=2015/2016
1-1/x-1=2015/2016
1/x+1=1-2015/2016
1/x+1=1/2016
=> x+1=2016
x=2016-1
x=2015
vậy x =2015
tích mình nha
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.......+\frac{1}{x\left(x+1\right)}=\frac{2015}{2016}\)
=>\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.......+\frac{1}{x\left(x+1\right)}=\frac{2015}{2016}\)
=>\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+......+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)
=>\(1-\frac{1}{x+1}=\frac{2015}{2016}\)
=>\(\frac{1}{x+1}=1-\frac{2015}{2016}=\frac{1}{2016}\)
=>x+1=2016
=>x=2015
Vậy x=2015
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(1-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\frac{1}{x+1}=1-\frac{2008}{2009}=\frac{1}{2009}\)
\(\Rightarrow x+1=2009\)
\(\Leftrightarrow x=2008\)
\(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + .. + \(\dfrac{1}{90}\) = \(\dfrac{6}{y}\)
\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\)+ ... + \(\dfrac{1}{9.10}\) = \(\dfrac{6}{y}\)
\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}\) + .. + \(\dfrac{1}{9}-\dfrac{1}{10}\) = \(\dfrac{6}{y}\)
\(\dfrac{1}{2}\) - \(\dfrac{1}{10}\) = \(\dfrac{6}{y}\)
\(\dfrac{2}{5}\) = \(\dfrac{6}{y}\)
y = 6 : \(\dfrac{2}{5}\)
y = 15
\(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{90}=\dfrac{6}{y}\)
=>\(\dfrac{6}{y}=\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{9\times10}\)
=>\(\dfrac{6}{y}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
=>\(\dfrac{6}{y}=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{5}{10}-\dfrac{1}{10}=\dfrac{4}{10}=\dfrac{2}{5}\)
=>\(y=5\times\dfrac{6}{2}=15\)