Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(1-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\frac{1}{x+1}=1-\frac{2008}{2009}=\frac{1}{2009}\)
\(\Rightarrow x+1=2009\)
\(\Leftrightarrow x=2008\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009
}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(1-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\frac{x+1-1}{x+1}=\frac{2008}{2009}\)
\(\frac{x}{x+1}=\frac{2008}{2009}\)
\(2009x=2008\left(x+1\right)\)
\(2009x=2008x+2008\)
\(2009x-2008x=2008\)
\(x=2008\)
Vậy x=2008
=>1- 1/2 + 1/2 - 1/3+.....+1/x - 1/(x+1) = 2008/2009
=>1 - 1/(x+1) = 2008/2009
=>1 - 1/(x+1) =1-1/1009
=>1/(x+1)=1/2009
=>x+1=2009
=>x=2008.Vậy x=2008
Đặt vế trái là A ta có:
\(\frac{A}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)
\(\frac{A}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow A=\frac{x-1}{x+1}\)
\(\Rightarrow\frac{x-1}{x+1}=\frac{2007}{2009}\Leftrightarrow x=2003\)
\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow...
ta có: 1/3 + 1/6 + ... + 2/x(x+1) = 2/2.3 + 2/3.4 +.......2/x(x+1) = 2(1/2.3 +1/3.4 +.....+1/x(x+1)) = 2.(1/2-1/3+1/3-1/4+....+1/x-1/(x+1))= 2.(1/2-1/(x+1)) = 1-2/(x+1)
giải 1-2/(x+1) = 2007/2009 ta được x=2008
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}\)
\(=2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{x+1-x}{x\left(x+1\right)}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{x+1}\right)\)
\(=1-\frac{2}{x+1}\)
Phương trình ban đầu tương đương với:
\(1-\frac{2}{x+1}=\frac{2007}{2009}\)
\(\Leftrightarrow x=2008\).
=>1/1.2+1/2.3=1/3.4+........+1/x.(x+1)=2008/2009
=>1-1/2+1/2-1/3+.....+1/x-1/x+1=1-1/2009
=>1-1/x+1=1-1/2009
=>-1/x=-1/2009
=>1/x=1/2009
=>x=2009
Nhớ k cho mình nha