Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>1/1.2+1/2.3=1/3.4+........+1/x.(x+1)=2008/2009
=>1-1/2+1/2-1/3+.....+1/x-1/x+1=1-1/2009
=>1-1/x+1=1-1/2009
=>-1/x=-1/2009
=>1/x=1/2009
=>x=2009
Nhớ k cho mình nha
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009
}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(1-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\frac{x+1-1}{x+1}=\frac{2008}{2009}\)
\(\frac{x}{x+1}=\frac{2008}{2009}\)
\(2009x=2008\left(x+1\right)\)
\(2009x=2008x+2008\)
\(2009x-2008x=2008\)
\(x=2008\)
Vậy x=2008
Đặt vế trái là A ta có:
\(\frac{A}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)
\(\frac{A}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow A=\frac{x-1}{x+1}\)
\(\Rightarrow\frac{x-1}{x+1}=\frac{2007}{2009}\Leftrightarrow x=2003\)
\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow...
ta có: 1/3 + 1/6 + ... + 2/x(x+1) = 2/2.3 + 2/3.4 +.......2/x(x+1) = 2(1/2.3 +1/3.4 +.....+1/x(x+1)) = 2.(1/2-1/3+1/3-1/4+....+1/x-1/(x+1))= 2.(1/2-1/(x+1)) = 1-2/(x+1)
giải 1-2/(x+1) = 2007/2009 ta được x=2008
1/2+1/6+1/12+1/20+...+1/x(x+1)=2015/2016
1/1.2+1/2.3+1/3.4+.....+1/x.(x+1)=2015/2016
1-1/2+1/2-1/3+1/3-1/4+......+1/x-1/x+1=2015/2016
1-1/x-1=2015/2016
1/x+1=1-2015/2016
1/x+1=1/2016
=> x+1=2016
x=2016-1
x=2015
vậy x =2015
tích mình nha
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.......+\frac{1}{x\left(x+1\right)}=\frac{2015}{2016}\)
=>\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.......+\frac{1}{x\left(x+1\right)}=\frac{2015}{2016}\)
=>\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+......+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)
=>\(1-\frac{1}{x+1}=\frac{2015}{2016}\)
=>\(\frac{1}{x+1}=1-\frac{2015}{2016}=\frac{1}{2016}\)
=>x+1=2016
=>x=2015
Vậy x=2015
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.(x+1)}=\frac{2007}{2009}\)
=> \(2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2017}{2019}\)
=> \(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2017}{2019}\)
=> \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
=> \(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{2009}:2\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)
=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2017}{4018}\)
=> \(\frac{1}{x+1}=\frac{1}{2019}\)
Vì 1 = 1
=> x + 1 = 2019
=> x = 2019 - 1
=> x = 2018
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(1-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\frac{1}{x+1}=1-\frac{2008}{2009}=\frac{1}{2009}\)
\(\Rightarrow x+1=2009\)
\(\Leftrightarrow x=2008\)