(x-5)y+3x=26
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(3x-5\right)^{26}\ge0\)
\(\left(y^2-1\right)^{28}\ge0\)
\(\left(x-z\right)^{10}\ge0\)
\(\Rightarrow\left(3x-5\right)^{26}+\left(y^2-1\right)^{28}+\left(x-z\right)^{10}\ge0\)
MÀ \(\Rightarrow\left(3x-5\right)^{26}+\left(y^2-1\right)^{28}+\left(x-z\right)^{10}=0\)(ĐỀ BÀI)
\(\Rightarrow\hept{\begin{cases}\left(3x-5\right)^{26}=0\\\left(y^2-1\right)^{28}=0\\\left(x-z\right)^{10}=0\end{cases}}\Rightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x=5\\y^2=1\\x-z=0\end{cases}}\)
=> x = 5/3
y = 1 hoặc y = -1
z = 5/3
vi(3x-5);(y2-1)+(x-z)10 luon luon lon hon hoac =0
suy ra :3x-5=0 3x=5 x=3/5
va :y2 -1 =0 y2=1 y=1
va:x-z=0 ma x=3/5 suy ra :z=0-3/5 z=-3/5
Ta có
\(3x=y;\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{3}=\frac{x}{1};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{2x}{4}=\frac{3y}{36}=\frac{x}{15}\)
Aps dụng tính chất DTSBN ta có
\(\frac{2x}{4}=\frac{3y}{36}=\frac{x}{15}=\frac{2x-3y+z}{4-36+15}=\frac{26}{-17}\)
\(\hept{\begin{cases}\frac{x}{4}=-\frac{26}{17}\\\frac{y}{12}=-\frac{26}{17}\\\frac{z}{15}=-\frac{26}{17}\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{104}{17}\\y=-\frac{312}{17}\\z=-\frac{390}{17}\end{cases}}}\)
Bài làm
Vì \(3x=y\Rightarrow x=\frac{y}{3}=\frac{x}{4}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
=> \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{2x}{8}=\frac{3y}{36}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{8}=\frac{3y}{36}=\frac{z}{15}\Rightarrow\frac{2x-3y+z}{8-36+18}=\frac{26}{-13}=-2\)
Do đó: \(\hept{\begin{cases}\frac{x}{4}=-2\\\frac{y}{12}=-2\\\frac{z}{15}=-2\end{cases}\Rightarrow\hept{\begin{cases}x=-8\\y=-24\\z=-30\end{cases}}}\)
Vậy x = -8, y = -24, z = -30
# Học tốt #
Ta có : \(\dfrac{x}{3}=\dfrac{y}{-2}\Rightarrow\dfrac{3x}{9}=\dfrac{2y}{-4}\) và `3x-2y=26`
ADTC dãy tỉ số bằng nhau ta có :
\(\dfrac{3x}{9}=\dfrac{2y}{-4}=\dfrac{3x-2y}{9-\left(-4\right)}=\dfrac{26}{13}=2\\ \Rightarrow\dfrac{x}{3}=2\Rightarrow x=2\cdot3=6\\ \Rightarrow\dfrac{y}{-2}=2\Rightarrow y=2\cdot\left(-2\right)=-4\)
Ta có : và `3x-2y=26`
ADTC dãy tỉ số bằng nhau ta có :
26:
A=12x^2+10x-6x-5-(12x^2-8x+3x-2)
=12x^2+4x-5-12x^2+5x+2
=9x-3
Khi x=-2 thì A=-18-3=-21
25:
b: \(\left(y-3\right)\left(y^2+y+1\right)-y\left(y^2-2\right)\)
=y^3+y^2+y-3y^2-3y-3-y^3+2y
=-2y^2-3
Ta có
\(\dfrac{3x}{15}=\dfrac{y}{2}\)
áp dụng ... ta đc
\(\dfrac{3x}{15}=\dfrac{y}{2}=\dfrac{3x-y}{15-2}=\dfrac{26}{13}=2\)
x=10
y=4
(x-5)y+3x=26
=>xy-5y+3x=26
=>xy+3x-5y-15=11
=>(x-5)(y+3)=11
=>\(\left(x-5;y+3\right)\in\left\{\left(1;11\right);\left(11;1\right);\left(-1;-11\right);\left(-11;-1\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(6;8\right);\left(16;-2\right);\left(4;-14\right);\left(-6;-4\right)\right\}\)
Đây là dạng toán nâng cao chuyên đề tìm phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp tìm điều kiện của biến để biểu thức nguyên như sau:
(\(x-5\))y + 3\(x\) = 26
(\(x-5\))y = 26 - 3\(x\)
y = \(\dfrac{26-3x}{x-5}\) (\(x\) ≠ 5)
y \(\in\) Z ⇔ 26 - 3\(x\) ⋮ \(x\) - 5
⇒ 11 - 3(\(x\) - 5) ⋮ \(x-5\)
⇒ 11 ⋮ \(x-5\)
\(x-5\) \(\in\) 41 ⇒ \(x-5\) \(\in\) Ư(11) = {-11; -1; 1; 1}
Lập bảng ta có:
Theo bảng trên ta có:
Các cặp giá trị nguyên của \(x\); y thỏa mãn đề bài là:
(\(x;y\)) = (-6; -4); (4; -14); (6; 8); (16; -2)
Vậy (\(x;y\)) = (-6; -4); (4; -14); (6; 8); (16; -2)