K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác BC'B'C có \(\widehat{BC'C}=\widehat{BB'C}=90^0\)

nên BC'B'C là tứ giác nội tiếp đường tròn đường kính BC

=>BC'B'C là tứ giác nội tiếp đường tròn tâm O, đường kính BC

Xét (O) có

BC là đường kính

B'C' là dây

Do đó: B'C'<BC

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Ta thấy AC = 4 cm; A’C’ = 4 cm.

Vậy AC = A’C’.

17 tháng 9 2023

Xét hai tam giác vuông: ∆ABC và ∆A'B'C' có:

BC = B'C' = 5 cm

AB = A'B' = 3 cm

⇒ ∆ABC = ∆A'B'C' (cạnh huyền - cạnh góc vuông)

⇒ AC = A'C' (hai cạnh tương ứng)

5 tháng 2 2020

Lời giải : 

A B C B' C' a C''

Ta có : \(\frac{AB'}{AB}=\frac{AC'}{AC}\)( GT ) ( 1 )

+) Đường thẳng a đi qua B' song song với BC ( GT )

\(B'C''//BC\)( vì đường thẳng a cắt AC tại C'' )

\(\Rightarrow\frac{AB'}{AB}=\frac{AC''}{AC}\)( Định lí Ta lét ) ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow AC'=AC''\)

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

a) Từ kí hiệu của hình vẽ ta thấy các cặp góc bằng nhau là:

\(\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\)

b) Ta có:

\(\frac{{A'B'}}{{AB}} = \frac{6}{4} = \frac{3}{2};\frac{{A'C'}}{{AC}} = \frac{{7,5}}{5} = \frac{3}{2};\frac{{B'C'}}{{BC}} = \frac{9}{6} = \frac{3}{2}\).

Ta thấy, \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = \frac{3}{2}\)

a: góc A=góc A'; góc B=góc B'; góc C=góc C'

b: A'B'/AB=A'C'/AC=B'C'/BC

a: Ta có: ΔBEH vuông tại H

nên \(\widehat{BEH}< 90^0\)

=>\(\widehat{BEA}>90^0\)

=>BA>BE

b: Ta có: ΔEHC vuông tại H

nên \(\widehat{HEC}< 90^0\)

=>\(\widehat{AEC}>90^0\)

hay CA>CE

c: Xét ΔEBC có HB<HC

mà HB là hình chiếu của EB trên BC

và HC là hình chiếu của EC trên BC

nên EB<EC

a: Xét ΔABC có AC>AB

mà góc đối diện với cạnh AC là góc ABC

và góc đối diện với cạnh AB là góc ACB

nên \(\widehat{ABC}>\widehat{ACB}\)

b: Xét ΔABC có AC>AB

mà hình chiếu của AC trên BC là HC

và hình chiếu của AB trên BC là HB

nên HC>HB

28 tháng 2 2022

Câu c,d,e đâu vậy bạn