Cho đường tròn $(O;10)$. Lấy một điểm $A$ tùy ý thuộc $(O)$. Vẽ dây $MN$ vuông góc với $OA$ tại trung điểm của $OA$. Tính độ dài dây $MN$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 căn 3/5 nhé
nếu cần trình bày thì bn kẻ hình ra
rồi có ob=oa=oc
ad đl pytago cho tam giác vuoong nnhes
Gọi I là trung điểm của AB
Suy ra: IO = IA = (1/2).OA = 3/2
Ta có: BC ⊥ OA (gt)
Suy ra: góc (OIB) = 90 °
Áp dụng định lí Pitago vào tam giác vuông OBI ta có: O B 2 = B I 2 + I O 2
Suy ra: B I 2 = O B 2 - I O 2
Ta có: BI = CI (đường kính dây cung)
- Gọi I là giao điểm của BC và OC
( IO = IA = 1,5cm ) ( OB = OA = 3cm )
Áp dụng đlí Py - ta - go cho tam giác vuông IBO ( ^I = 90^o ) , ta có :
\(OB^2=IB^2+IO^2\)
\(3^2=IB^2+1,5^2\)
\(IB^2=3^2-1,5^2=9-2,25=6,75\)
\(\Rightarrow IB=\sqrt{6,75}\approx2,6\)
Mà \(OA\perp BC\Rightarrow IC=IB\)( t/c đường kính vuông với dây cung )
=> BC = 2 . IB = 2 . 2,6 = 5,2
Vậy : BC = 5,2cm
Ta có BC ⊥ OA ⇒ BE = EC
E là trung điểm của OA ⇒ OE = AE và OA=OB= 3cm
OE=\(\dfrac{OA}{2}\) =\(\dfrac{3}{2}\) = 1.5 cm
ΔHBO vuông tại E :
BE=\(\sqrt{OB^2-OE^2}\)
=\(\sqrt{3^2-1.5^2}\) =\(\dfrac{3\sqrt{3}}{2}\) cm
⇒ BC= 2BE
= 2. \(\dfrac{3\sqrt{3}}{2}\) = \(3\sqrt{3}\) cm
a) Ta có AB và AC là tiếp tuyến tại A và B của (O)
=> AB⊥OB và AC⊥OC
Xét ΔAOB và ΔAOC có
OB=OC(=R)
Góc ABO=Góc ACO=90
OA chung
=> ΔAOB=ΔAOC
=> AB=AC
=> A∈trung trực của BC
Có OB=OC(=R)
=>O∈trung trực của BC
=> OA là đường trung trực của BC
Mà H là trung điểm của BC
=>A;H;O thẳng hàng
Xét ΔABO vuông tại B
=>A;B:O cùng thuộc đường tròn đường kính OA
Xét ΔACO vuông tại C
=>A;C;O cùng thuộc đuường tròn đường kính OA
=>A;B;C;O cùng thuộc đường tròn đường kính OA
b) Xét (O) có BD là đường kính
=>ΔBCD vuông tại C
=> CD⊥BC
Mà OA⊥BC
=>OA//CD
=> Góc AOC=Góc OCD
Xét ΔOCD có OC=OD
=> ΔOCD cân tại O
=> Góc OCD=Góc ODC
=> Góc ODC=Góc AOC
Xét ΔAOC và ΔCDK có
Góc AOC=Góc CDK
Góc ACO=Góc CKD=90
=>ΔAOC∞ΔCDK
=>AOCDAOCD= ACCKACCK
=>AC.CD=CK.OA
d) Xét ΔOCK vuông tại K
=> ΔOCK nội tiếp đường tròn đường kính OC
Xét ΔOHC vuông tại H
=> ΔOHC nội tiếp đường tròn đươngf kính OC
=> Tứ giác OKCH nội tiếp đường tròn đường kính OC
=> Góc CHK=Góc COD
Có góc BOA=Góc BCK( cùng phụ góc CBD)
Góc CHI+góc BCK=Góc BOA+ góc BAO
=>Góc CHI=Góc BAO
Mà Góc BAO=Góc CBD( cùng phụ góc ABC)
=> Góc CHI=Góc CBD
=> HI//BD
Xét ΔBCD có HI//BD và H là trung điểm của BC
=> HI là đường trung bình của ΔBCD
=> I là trung điểm của CK
Xét (O) có
OH là một phần đường kính
MN là dây
OH⊥MN tại H
Do đó: H là trung điểm của MN
=>HM=HN=MN/2=3(cm)
Xét ΔOHM vuông tại H có
\(OM^2=OH^2+HM^2\)
hay OH=4cm
Ta có: OA = OB (bán kính)
OB = BA (tính chất hình thoi).
Nên OA = OB = BA => ΔAOB đều => ∠AOB = 60o
Trong tam giác OBE vuông tại B ta có:
BE = OB.tg∠AOB = OB.tg60o = R.√3
Kẻ OH ⊥ EF.
Trong tam giác vuông OHA vuông tại H có OA > OH (đường vuông góc ngắn hơn đường xiên).
Vì OA > OH nên BC < EF (định lí 3).
Gọi giao điểm của MN với OA là H
Vì MN\(\perp\)OA tại trung điểm của OA
nên MN\(\perp\)OA tại H và H là trung điểm của OA
Xét ΔOMA có
MH là đường cao
MH là đường trung tuyến
Do đó: ΔOMA cân tại M
=>MO=MA
mà OM=OA
nên OM=MA=OA
=>ΔOMA đều
=>\(\widehat{MOA}=60^0\)
Xét ΔMHO vuông tại H có \(sinMOH=\dfrac{MH}{MO}\)
=>\(\dfrac{MH}{10}=sin60=\dfrac{\sqrt{3}}{2}\)
=>\(MH=10\cdot\dfrac{\sqrt{3}}{2}=5\sqrt{3}\left(cm\right)\)
ΔOMN cân tại O
mà OH là đường cao
nên H là trung điểm của MN
=>\(MN=2\cdot MH=2\cdot5\sqrt{3}=10\sqrt{3}\left(cm\right)\)