K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(|x^2|x+\dfrac{3}{4}||=x^2\)

=>\(x^2\cdot\left|x+\dfrac{3}{4}\right|=x^2\)

=>\(\left|x+\dfrac{3}{4}\right|=1\)

=>\(\left[{}\begin{matrix}x+\dfrac{3}{4}=1\\x+\dfrac{3}{4}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{7}{4}\end{matrix}\right.\)

15 tháng 8

|\(x^2\).|\(x+\dfrac{3}{4}\)| |= \(x^2\)

\(x^2\).|\(x+\dfrac{3}{4}\)| = \(x^2\)

\(x^2\).|\(x+\dfrac{3}{4}\)| - \(x^2\) = 0

\(x^2\).(|\(x+\dfrac{3}{4}\)| - 1) = 0

\(\left[{}\begin{matrix}x=0\\\left|x+\dfrac{3}{4}\right|=1\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x+\dfrac{3}{4}=-1\\x+\dfrac{3}{4}=1\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=-\dfrac{7}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\) 

Vậy \(x\) \(\in\) { - \(\dfrac{7}{4}\); 0; \(\dfrac{1}{4}\)}

 

 

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$

$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$

$\Leftrightarrow x-2=0$ hoặc $4-x=0$

$\Leftrightarrow x=2$ hoặc $x=4$ (tm)

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$

$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$

Với $4x^3-3x^2+6x-4=0(*)$

Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$

Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:

$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$

Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)

Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)

 

Bài 3: 

b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)

hay \(x\in\left\{0;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)

=>x-1=0

hay x=1

d: \(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)

hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)

11 tháng 4 2022

lx

11 tháng 4 2022

lỗi r bn

a: =>(x^2+x)^2-2(x^2+x)+(x^2+x)-2=0

=>(x^2+x-2)(x^2+x+1)=0

=>(x+2)(x-1)=0

=>x=-2 hoặc x=1

b: ĐKXĐ: x<>4; x<>1

PT =>\(\dfrac{x+3+3x-12}{x-4}=\dfrac{6}{1-x}\)

=>(4x-9)(1-x)=6(x-4)

=>4x-4x^2-9+9x=6x-24

=>-4x^2+13x-9-6x+24=0

=>-4x^2+7x+15=0

=>x=3(nhận) hoặc x=-5/4(nhận)

18 tháng 5 2021

3(2x+y)-2(3x-2y)=3.19-11.2

6x+3y-6x+4y=57-22

7y=35

y=5

thay vào :

2x+y=19

2x+5=19

2x=14

x=7

2/ x2+21x-1x-21=0

x(x+21)-1(x+21)=0

(x+21)(x-1)=0

TH1 x+21=0

x=-21

TH2 x-1=0

x=1

vậy x = {-21} ; {1}

3/ x4-16x2-4x2+64=0

x2(x2-16)-4(x2-16)=0

(x2-16)-(x2-4)=0

TH1 x2-16=0

x2=16

<=>x=4;-4

TH2 x2-4=0

x2=4

x=2;-2

18 tháng 5 2021

Bài 1 : 

\(\hept{\begin{cases}2x+y=19\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y=38\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}7x=49\\2x+y=19\end{cases}}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=7\\2x+y=19\end{cases}}\)Thay vào x = 7 vào pt 2 ta được : 

\(14+y=19\Leftrightarrow y=5\)Vậy hệ pt có một nghiệm ( x ; y ) = ( 7 ; 5 )

Bài 2 : 

\(x^2+20x-21=0\)

\(\Delta=400-4\left(-21\right)=400+84=484\)

\(x_1=\frac{-20-22}{2}=-24;x_2=\frac{-20+22}{2}=1\)

Bài 3 : Đặt \(x^2=t\left(t\ge0\right)\)

\(t^2-20t+64=0\)

\(\Delta=400+4.64=656\)

\(t_1=\frac{20+4\sqrt{41}}{2}\left(tm\right);t_2=\frac{20-4\sqrt{41}}{2}\left(ktm\right)\)

Theo cách đặt : \(x^2=\frac{20+4\sqrt{41}}{2}\Rightarrow x=\sqrt{\frac{20+4\sqrt{41}}{2}}=\frac{\sqrt{20\sqrt{2}+4\sqrt{82}}}{2}\)

11 tháng 5 2023

`|5x| = - 3x + 2`

Nếu `5x>=0<=> x>=0` thì phương trình trên trở thành :

`5x =-3x+2`

`<=> 5x +3x=2`

`<=> 8x=2`

`<=> x= 2/8=1/4` ( thỏa mãn )

Nếu `5x<0<=>x<0` thì phương trình trên trở thành :

`-5x = -3x+2`

`<=>-5x+3x=2`

`<=> 2x=2`

`<=>x=1` ( không thỏa mãn ) 

Vậy pt đã cho có nghiệm `x=1/4`

__

`6x-2<5x+3`

`<=> 6x-5x<3+2`

`<=>x<5`

Vậy bpt đã cho có tập nghiệm `x<5`

18 tháng 9 2019

\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\)

\(ĐKXĐ:x\ne\pm2\)

\(pt\Leftrightarrow\frac{9}{x^2-4}=\frac{x^2-3x+2}{x^2-4}+\frac{3x+6}{x^2-4}\)

\(\Leftrightarrow\frac{9}{x^2-4}=\frac{x^2+8}{x^2-4}\)

\(\Leftrightarrow x^2+8=9\Leftrightarrow x=\pm1\left(tm\right)\)

Vậy pt có 2 nghiệm là 1 và -1

18 tháng 9 2019

Điều kện :  \(x+2\ne0\) và \(x-2\ne0\Leftrightarrow x=\pm2\)

( Khi đó \(x^2-4=\left(x+2\right)\left(x-2\right)\ne0\) )

\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\)

\(\Leftrightarrow\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)+3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow x^2-3x+2+3x+6=9\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)

Vậy tập nghiệm của PT là: \(S=\left\{-1;1\right\}\)

Chúc bạn học tốt !!!

a: \(\Leftrightarrow\dfrac{3}{x-2}=\dfrac{2x-1}{x-2}-\dfrac{x\left(x-2\right)}{x-2}\)

=>3=2x-1-x^2+2x

=>3=-x^2+4x-1

=>x^2-4x+1+3=0

=>x^2-4x+4=0

=>x=2(loại)

b: =>(x+2)(2x-4)=x(2x+3)

=>2x^2-4x+4x-8=2x^2+3x

=>3x=-8

=>x=-8/3(nhận)

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)