K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(E=2x^2+4x+13\)

\(=2\left(x^2+2x+\dfrac{13}{2}\right)\)

\(=2\left(x^2+2x+1+\dfrac{11}{2}\right)\)

\(=2\left(x+1\right)^2+11>=11>0\forall x\)

\(F=2x^2-3x+6\)

\(=2\left(x^2-\dfrac{3}{2}x+3\right)\)

\(=2\left(x^2-2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{39}{16}\right)\)

\(=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{39}{8}>=\dfrac{39}{8}>0\forall x\)

11 tháng 8 2024

E=2x2+4x+13

E=2(x2+2x+1)+11

E=2(x+1)2+11

2(x+1)2≥0,∀x

⇒2(x+1)2+11 lớn hơn 0 ∀x

⇒E luôn nhân giá trị dương

F=2x2-3x+6

 2F=4x2-6x+12

2F=(4x2-6x+\(\dfrac{9}{4}\))+\(\dfrac{15}{4}\)

2F=(2x+\(\dfrac{3}{2}\))2+\(\dfrac{15}{4}\)

F=\(\dfrac{\left(2x+\dfrac{3}{2}\right)^2}{2}\)+\(\dfrac{15}{8}\)

\(\dfrac{\left(2x+\dfrac{3}{2}\right)^2}{2}\)≥0,∀x

\(\dfrac{\left(2x+\dfrac{3}{2}\right)^2}{2}\)+\(\dfrac{15}{8}\) lớn hơn 0 ∀x

⇒F luôn nhận giá trị dương

 

12 tháng 12 2017

Với mọi \(x\in R\) , ta có \(3x^2\ge0\) suy ra \(3x^2+5>5\). Vì vậy với mọi giá trị x thì hàm số đã cho nhận giá trị dương.

14 tháng 12 2017

ta có hàm số y = f(x) = 3x2 + 5

vì x2 \(\ge\)\(\forall\)\(\Rightarrow\)3x2 + 5 \(\ge\)5 hay y \(\ge\)5

Vậy với mọi giá trị của x thì hàm số đã cho luôn nhận giá trị dương

Vì x2>0 ( với mọi x )  nên 3x2+5 > 0

Vậy f(x) = 3x2 + 5 luôn nhận giá trị dương với mọi giá trị x ( đpcm ).

  XONG RỒI ĐÓ...

14 tháng 6 2017

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

25 tháng 6 2019

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

18 tháng 9 2023

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

21 tháng 2 2017

\(x^2+x+3=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{11}{4}=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\) luôn dương với mọi x

------------------

\(-2x^2+3x-8=2\left(-x^2+\frac{3}{2}x-4\right)=2\left[-x^2+2.\frac{3}{4}.x-\frac{9}{16}-\frac{55}{16}\right]=2\left[-\left(x-\frac{3}{4}\right)^2-\frac{55}{16}\right]\)

\(=2\left[-\left(x-\frac{3}{4}\right)^2-\frac{55}{16}\right]\le-\frac{55}{15}< 0\) luôn âm với mọi x

27 tháng 9 2018

a) Rút gọn E Þ đpcm.

b) Điều kiện xác định E là: x ≠    ± 1  

Rút gọn F ta thu được F = 4 Þ đpcm

18 tháng 5 2021

\(x^4+2x^2+1=\left(x^2+1\right)^2\ge1>0\forall x\) ( đpcm ) 

18 tháng 5 2021

`x^4+2x^2+1`

`=(x^2)^2 + 2.x^2 .1 + 1^2`

`=(x^2+1)^2 > 0 forall x`.

1 tháng 9 2017

Ta tách như sau: \(2x^2+8x+15=2\left(x^2+4x+4\right)+7=2\left(x+2\right)^2+7\)

Do \(\left(x+2\right)^2\ge0\Rightarrow2\left(x+2\right)^2+7\ge7>0\)

Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của biến.