K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

\(\frac{x_1^2-2}{x_1+1}.\frac{x_2^2-2}{x_2+1}=4\)

\(\frac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1+x\right)\left(x_2+1\right)}=4\)

\(\frac{\left(x_1.x_2\right)^2-2x_1^2-2x_2^2+4}{x_1.x_2+x_1+x_2+1}=4\)

\(\frac{\left(x_1.x_2\right)^2-2\left(x^2_1+x_2^2\right)+4}{x_1.x_2+\left(x_1+x_2\right)+1}=4\)

\(\frac{\left(m-2\right)^2-2.\left[\left(x_1+x_2\right)-2x_1x_2\right]+4}{m-2+\left(-m\right)+1}=4\)

\(\frac{m^2-4m+4-2.\left[m^2-2\left(m-2\right)\right]+4}{-1}=4\)

\(\Leftrightarrow m^2-4m+4-2\left(m^2-2m+4\right)+4=-4\)

\(\Leftrightarrow m^2-4m+4-2m^2+4m-8+4+4=0\)

\(\Leftrightarrow-m^2+4=0\)

\(\Leftrightarrow m^2-4=0\)

\(\Leftrightarrow m^2=4\)

\(\Leftrightarrow m=\pm2\)

vậy \(m=\pm2\)  là các giá trị cần tìm 

30 tháng 5 2018

Ta có : \(m;n\)là hai số nguyên tố cùng nhau.

\(\RightarrowƯCLN(m;n)=1\)

Mà \(m^2⋮n\)

      \(n^2⋮m\)

Và có : \(m;n\)là hai số lẻ nguyên dương

\(\Rightarrow m=m=1\)

\(\Rightarrow m^2+n^2+2=4\)

\(\Rightarrow4m.n=4\)

\(\Rightarrow m^2+n^2+2⋮4mn\left(đpcm\right)\)

30 tháng 5 2018

Ta có:

\(\hept{\begin{cases}m^2+2⋮n\\n^2+2⋮m\end{cases}}\)

\(\Rightarrow\left(m^2+2\right)\left(n^2+2\right)⋮mn\)

\(\Rightarrow m^2n^2+2m^2+2n^2+4⋮mn\)

\(\Rightarrow2m^2+2n^2+4⋮mn\)

\(\Rightarrow m^2+n^2+2⋮mn\left(1\right)\)

Vì m, n lẻ 

\(\Rightarrow\hept{\begin{cases}m^2\equiv1\left(mod4\right)\\n^2\equiv1\left(mod4\right)\end{cases}}\)

\(\Rightarrow m^2+n^2+2⋮4\left(2\right)\)

Từ (1) và (2) \(\Rightarrow m^2+n^2+2⋮4mn\)

12 tháng 3 2017

Chào! tk mình đi bạn.Mình bị âm nè.

12 tháng 3 2017

Khỏi thanks!

\(------------------\)

Ta có:

\(\hept{\begin{cases}x+3=2^y\left(1\right)\\3x+1=4^z\left(2\right)\end{cases}}\)

Cộng hai pt  \(\left(1\right);\left(2\right)\)  vế theo vế, ta thu được:

\(4\left(x+1\right)=4^z+2^{y-2}\)

\(\Leftrightarrow\)  \(x+1=4^{z-1}+2^{y-2}\)    

\(\Leftrightarrow\)  \(\left(x-1\right)+2=4^{z-1}+2^{y-2}\)  \(\left(i\right)\)

Lại có:   do  \(x,y,z\in Z^+\)  nên từ  \(\left(1\right)\) suy ra  \(2^y\ge4\)  hay  \(y\ge2\)

Khi đó, ta phải tìm các các nghiệm  \(x,y,z\)  sao cho  \(x,y,z\in Z^+\)  và  \(y\ge2\)

\(------------------\)

Mặt khác, từ phương trình  \(\left(2\right)\)  với lưu ý rằng  \(z\in Z^+\)  suy ra  \(3x+1⋮4,\) 

hay nói cách khác,  \(\left[4x-\left(x-1\right)\right]⋮4\)  tức là \(x-1⋮4\)  \(\left(3\right)\)

Do đó, từ  \(\left(i\right)\)  với chú ý   \(\left(3\right)\)  đã chứng minh ở trên suy ra  \(VP\left(i\right)\)  và   \(2\)  đồng dư theo mô đun  \(4\)

\(------------------\)

Ta xét các trường hợp sau:

\(\Omega_1:\)    Với  \(z=1\) thì  \(4^{z-1}=1\)  chia cho  \(4\)  dư  \(1\)  nên  \(2^{y-2}\)  chia cho  \(4\)  dư  \(1\)  \(\Rightarrow\)  \(y=2\)

vì nếu  \(y=3\)  thì   \(2^{y-2}=2\)  chia cho  \(4\)  dư  \(2\) và  \(y>3\)  thì    \(2^{y-2}⋮4\) 

Khi đó, từ  \(\left(1\right);\left(2\right)\)  suy ra  \(x=1\)

\(\Omega_1:\)  Với  \(z>1\)  thì  \(4^{z-1}⋮4\)  nên  ta có  \(2^{y-2}\)  chia cho  \(4\) phải dư  \(2\)  suy ra  \(y=3\)

Theo đó, dễ dàng suy ra được  \(x=5\)  dẫn đến  \(z=2\)

\(------------------\)

Vậy,  các bộ nghiệm nguyên dương thỏa mãn là  \(\left(x,y,z\right)\in\left\{\left(1,2,1\right);\left(5,3,2\right)\right\}\)

16 tháng 1 2022

Bó tay. com

17 tháng 1 2022
Ko biết sorry
8 tháng 1 2019

Cách khác nhé!
Cộng từng vế của các pt trên lại ta được

\(3\left(x_1+x_2+x_3+...+x_{10}\right)=30\)

\(\Leftrightarrow x_1+x_2+x_3+...+x_{10}=10\)(*)

\(\Leftrightarrow\left(x_1+x_2+x_3\right)+\left(x_4+x_5+x_6\right)+\left(x_7+x_8+x_9\right)+x_{10}=10\)

\(\Leftrightarrow3+3+3+x_{10}=10\)

\(\Leftrightarrow x_{10}=1\)

Viết lại pt (*) ta được

\(\left(x_{10}+x_1+x_2\right)+\left(x_3+x_4+x_5\right)+\left(x_6+x_7+x_8\right)+x_9=10\)

\(\Leftrightarrow3+3+3+x_9=10\)

\(\Leftrightarrow x_9=1\)

Chứng minh tương tự cuối cùng được \(x_1=x_2=x_3=...=x_{10}=1\)

Vậy .............

8 tháng 1 2019

Ta có:x1+x2+x3=x2+x3+x4=3

\(\Rightarrow\)x4-x1=0\(\Leftrightarrow\)x1=x4

cmtt ta có x1=x2=x3=...=x10

\(\Rightarrow\)x1=x2=x3=...=x10=1