\(\hept{\begin{cases}x_1+x_2=-m\\x_1.x_2=m-2\end{cases}}\)

tìm M để 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

\(\frac{x_1^2-2}{x_1+1}.\frac{x_2^2-2}{x_2+1}=4\)

\(\frac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1+x\right)\left(x_2+1\right)}=4\)

\(\frac{\left(x_1.x_2\right)^2-2x_1^2-2x_2^2+4}{x_1.x_2+x_1+x_2+1}=4\)

\(\frac{\left(x_1.x_2\right)^2-2\left(x^2_1+x_2^2\right)+4}{x_1.x_2+\left(x_1+x_2\right)+1}=4\)

\(\frac{\left(m-2\right)^2-2.\left[\left(x_1+x_2\right)-2x_1x_2\right]+4}{m-2+\left(-m\right)+1}=4\)

\(\frac{m^2-4m+4-2.\left[m^2-2\left(m-2\right)\right]+4}{-1}=4\)

\(\Leftrightarrow m^2-4m+4-2\left(m^2-2m+4\right)+4=-4\)

\(\Leftrightarrow m^2-4m+4-2m^2+4m-8+4+4=0\)

\(\Leftrightarrow-m^2+4=0\)

\(\Leftrightarrow m^2-4=0\)

\(\Leftrightarrow m^2=4\)

\(\Leftrightarrow m=\pm2\)

vậy \(m=\pm2\)  là các giá trị cần tìm 

6 tháng 4 2018

Ta có : 

\(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+1}-\frac{2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)

Để P đạt GTNN thì \(1-\frac{2}{\sqrt{x}+1}\) phải đạt GTNN hay \(\frac{2}{\sqrt{x}+1}>0\) và đạt GTLN \(\Rightarrow\)\(\sqrt{x}+1>0\) và đạt GTNN 

\(\Rightarrow\)\(\sqrt{x}+1=1\)

\(\Rightarrow\)\(\sqrt{x}=0\)

\(\Rightarrow\)\(x=0\)

Suy ra : 

\(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{0}-1}{\sqrt{0}+1}=\frac{-1}{1}=-1\)

Vậy \(P_{min}=-1\) khi \(x=0\)

8 tháng 6 2018

\(\Rightarrow\)\(x_1^2+\left(x_1+x_2\right)x_2+4m^2-6=0\)

\(\Rightarrow x_1^2+x_1x_2+x_2^2+4m^2-6=0\)

\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2+x_1x_2+4m^2-6=0\)

\(\Rightarrow\left(4m\right)^2-x_1x_2+4m^2-6=0\)

\(\Rightarrow16m^2-\left(4m^2-6\right)+4m^2-6=0\)

\(\Rightarrow16m^2-4m^2+6+4m^2-6=0\)

\(\Rightarrow16m^2=0\Rightarrow m=0\)

8 tháng 1 2019

Cách khác nhé!
Cộng từng vế của các pt trên lại ta được

\(3\left(x_1+x_2+x_3+...+x_{10}\right)=30\)

\(\Leftrightarrow x_1+x_2+x_3+...+x_{10}=10\)(*)

\(\Leftrightarrow\left(x_1+x_2+x_3\right)+\left(x_4+x_5+x_6\right)+\left(x_7+x_8+x_9\right)+x_{10}=10\)

\(\Leftrightarrow3+3+3+x_{10}=10\)

\(\Leftrightarrow x_{10}=1\)

Viết lại pt (*) ta được

\(\left(x_{10}+x_1+x_2\right)+\left(x_3+x_4+x_5\right)+\left(x_6+x_7+x_8\right)+x_9=10\)

\(\Leftrightarrow3+3+3+x_9=10\)

\(\Leftrightarrow x_9=1\)

Chứng minh tương tự cuối cùng được \(x_1=x_2=x_3=...=x_{10}=1\)

Vậy .............

8 tháng 1 2019

Ta có:x1+x2+x3=x2+x3+x4=3

\(\Rightarrow\)x4-x1=0\(\Leftrightarrow\)x1=x4

cmtt ta có x1=x2=x3=...=x10

\(\Rightarrow\)x1=x2=x3=...=x10=1