Cho p + 6 ; p + 8 ; p + 12 ; p +14 đều là số nguyên tố .Tìm số nguyên tố p.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6A = 6^2+6^3+....+6^2017
5A=6A-A= (6^2+6^3+....+6^2017) - (6+6^2+6^3+....+6^2016) = 6^2017-6
=> 6^n = 5.A+6 = 6^2017-6+6 = 6^2017
=> n = 2017
k mk nha
a+5b=a-b +6b vì 6b chia hết cho 6 nên a+5b chia hết cho 6
Các phần còn lại làm tương tự
a+17b=1-b +18b.....
Ta có : A = 6 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + .... + 617 + 618 + 619 + 620
= (6 + 62 + 63 + 64) + (65 + 66 + 67 + 68) + .... + (617 + 618 + 619 + 620)
= (6 + 62 + 63 + 64) + 64.(6 + 62 + 63 + 64) +...+ 616.(6 + 62 + 63 + 64)
= 1554 + 64.1554 + .... + 616.1554
= 1554.(1 + 64 + .... + 616)
= 222.7.(1 + 64 + .... + 616) \(⋮\)222
=> \(A⋮222\)(ĐPCM)
Bạn có thể làm theo cách của bạn Xyz hoặc làm theo cách sau :
Ta có : A=6+62+63+...+620
=(6+63)+(62+64)+...+(618+620)
=6(1+62)+62(1+62)+...+618(1+62)
=6.37+62.37+...+618.37
=222+6.6.37+...+617.6.37
=222+6.222+...+617.222
Vì 222\(⋮\)222 nên 222+6.222+...+617.222\(⋮\)222
hay A\(⋮\)222
Vậy A\(⋮\)222.
\(D=6+6^2+6^3+6^4+...+6^{120}\)
\(=\left(6+6^2\right)+\left(6^3+6^4\right)+...+\left(6^{119}+6^{120}\right)\)
\(=6\left(1+6\right)+6^3\left(1+6\right)+...+6^{119}\left(1+6\right)\)
\(=7\left(6+6^3+...+6^{119}\right)\)chia hết cho \(7\).
\(D=6+6^2+6^3+6^4+...+6^{120}\)
\(=\left(6+6^2+6^3\right)+...+\left(6^{118}+6^{119}+6^{120}\right)\)
\(=6\left(1+6+6^2\right)+...+6^{118}\left(1+6+6^2\right)\)
\(=43\left(6+...+6^{118}\right)\)chia hết cho \(43\).
A = 6 + 62 + 63 + ... + 699
6A = 62 + 63 + 64 + ... + 6100
6A - A = ( 62 + 63 + 64 + ... + 6100 ) - ( 6 + 62 + 63 + ... + 699 )
5A = 6100 - 6
Vì 5A = 6100 - 6 ; B = 6100
=> 5A < B
5A < B
=> A < \(\frac{B}{5}\)
abc2 + 423 = 2abc
10abc + 2 + 423 = 2000 + abc
10abc + 425 = 2000 + abc
9abc = 1575
abc = 1575 : 9
abc = 175
có 6B = 6 + 62 +63+ ....+ 620 + 621
B = 1 + 6 + 62 + 63 + ...+ 620
=> 6B - B = 621 - 1
5 B = 621 - 1
5B + 1 = 621
có 621 chia hết cho 6
=> 5B + 1 chia hết cho 6
6D=61+62+63+64+...+621
=>6D-D=6+62+63+64+...+661-1-6-62-63-...-620
=>5D=661-1
=>5D+1=661-1+1
=>5D+1=661
Vì 6 chia hết cho 6
=>661 chia hết cho 6
=>5D+1 chia hết cho 6(đpcm)
S= 60+61+62+63+64+...+6104+6105+6106+6107
= (60+61)+(62+63)+...+(6104+6105)+(6106+6107)
=(6+1)+62(6+1)+...+6104(6+1)+6106(6+1)
=(1+62+...+6104+6106)(6+1)
=7(1+62+...+6104+6106) chia hết cho 7 (dpcm)
bạn chúng minh tương tự (nhóm 4 số hạng liền nhau) để S chia hết cho 259
Giải
Xét p=2 ta có: p+6=8(hợp số) =>p=2(loại)
Xét p=3 ta có: p+6=9(hợp số) =>p=3(loại)
Xét p=5 ta có: p+6=11(nguyên tố);p+8=13(nguyên tố);p+12=17(nguyên tố);p+14=19(nguyên tố)
Xét p>5 =>p không chia hết cho 5 có dạng:
+ P=5k+1(k thuộc N*)
Ta có: p+14=5k+1+14=5k+15 chia hết cho 5 =>p+14 là hợp số
Vậy: P=5k+1(loại)
+P=5k+2(k thuộc N*)
Ta có: p+8=5k+2+8=5k+10 chia hết cho 5 =>p+8 là hợp số
Vậy: P=5k+2(loại)
+P=5k+3(k thuộc N*)
Ta có: p+12=5k+3+12=5k+15 chia hết cho 5 =>p+12 là hợp số
Vậy: P=5k+3(loại)
+P=5k+4(k thuộc N*)
Ta có: p+6=5k+4+6=5k+10 chia hết cho 5 =>p+6 là hợp số
Vậy: P=5k+4(loại)
Kết luận: số nguyên tố p cần tìm là 5