Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = 1 + 6 + 62 + ... + 620
6D = 6 + 62 + ... + 621
6D - D = 621 - 1
5D = 621 - 1
Ta có : 621 - 1 + 1 = 621
Mà 621 = 6.6.6...6.6 nên sẽ chia hết cho 6
21 CS 6
=> đpcm
a) Ta có : C x 5 = 5^101 + 5^102 + ..... + 5^151
C x 5 = 5^151 - 5^100 + C
C = ( 5^151 - 5^100 ) : 4
b) Ta có : D x 6 = 6 + 6^2 + 6^3 + ..... + 6^21
D x 6 = 6^21 - 1 + C
D x 5 = 6^21 - 1
=) 5D + 1 = 6^21 - 1 + 1 = 6^21 chia hết cho 6
\(C=5^{100}+5^{101}+....+5^{150}\)
\(5C=5^{101}+5^{102}+...+5^{151}\)
\(4C=5^{151}-5^{100}\)
\(C=\frac{5^{151}-5^{100}}{4}\)
\(D=1+6+6^2+...+6^{20}\)
\(\Rightarrow6D=6+6^2+6^3+....+6^{21}\)
\(\Rightarrow5D=6^{21}-1\)
\(\Rightarrow5D+1=6^{21}\)
Vì \(6^{21}⋮6\) nên \(5D+1⋮6\)
M=(1+6)+62(6+1)+...+62011(6+1)
M=7(1+62+...+62011)=>M luôn chia hết cho 7
Gọi tổng đó là A. Ta có:
A=(61+62)+(63+64)+...+(62013+62014)+(60+2015)
=61(60+61)+63(60+61)+...+62013(60+61)+7x288
=61x7+63x7+...+62013x7+7x288
=7(61+63+...+62013+288) chia hết cho 7
Vậy A chia hết cho 7
a)Ta thấy: 6 đồng dư với 1(mod 5)
=>6100 đồng dư với 1100(mod 5)
=>6100 đồng dư với 1(mod 5)
=>6100-1 đồng dư với 1-1(mod 5)
=>6100-1 đồng dư với 0(mod 5)
=>6100-1 chia hết cho 5
b)Ta thấy:21 đồng dư với 1(mod 10)
=>2120 đồng dư với 120(mod 10)
=>2120 đồng dư với 1(mod 10)
11 đồng dư với 1(mod 10)
=>1110 đồng dư với 110(mod 10)
=>1110 đồng dư với 1(mod 10)
=>2120-1110 đồng dư với 1-1(mod 10)
=>2120-1110 đồng dư với 0(mod 10)
=>2120-1110 chia hết cho 10
=>2120-1110 chia hết cho 2 và 5
c)Ta thấy:10 đồng dư với 1(mod 3)
=>109 đồng dư với 19(mod 3)
=>109 đồng dư với 1(mod 3)
=>109+2 đồng dư với 1+2(mod 3)
=>109+2 đồng dư với 3(mod 3)
=>109+2 đồng dư với 0(mod 3)
=>109+2 chia hết cho 3
d)Ta thấy:10 đồng dư với 1(mod 9)
=>1010 đồng dư với 110(mod 9)
=>1010 đồng dư với 1(mod 9)
=>1010-1 đồng dư với 1-1(mod 9)
=>109-1 đồng dư với 0(mod 9)
=>109-1 chia hết cho 9
a) 6100 - 1 = (....6) - 1 = (....5) => hiệu đó chia hết cho 5
2110 - 1110 = (....1) - (....1) = (...0) => hiệu đó chia hết cho 2 và 5
109 + 2 = 100..2 . tổng các chữ số bằng 3 => số đó chia hết cho 3
1010 - 1 = 999...9 = 9.111....1 chia hết cho 9
a, 6 + 62 + 63 + 64
= (6+62) + (63+64)
= 6(1+6) + 63(1+6)
= 6.7 + 63.7
= 7(6+63) chia hết cho 7 (đpcm)
7+72+73+74+.....+710
= (7+72) + (73+74)+.....+(79+710)
=7(1+7) + 73(1+7) +.......+ 79(1+7)
= 7.8 + 73.8 +....... + 79.8
= 8(7 + 73 +....... + 79) chia hết cho 8 (đpcm)
B=6+62+63+...+629+630
B=(6+6263)+...+(628+629+630)
B=6.42+...+628.42
B=42.(6+64+...+628)
vi 42=21.2 nen\(\Rightarrow\)B\(⋮\)21
6D=61+62+63+64+...+621
=>6D-D=6+62+63+64+...+661-1-6-62-63-...-620
=>5D=661-1
=>5D+1=661-1+1
=>5D+1=661
Vì 6 chia hết cho 6
=>661 chia hết cho 6
=>5D+1 chia hết cho 6(đpcm)