K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7

a) \(\dfrac{3}{7}>\dfrac{2}{7}>\dfrac{2}{8}=\dfrac{1}{4}>\dfrac{1}{9}\)

b) \(-\dfrac{5}{16}< 0< \dfrac{3}{4}\)

c) \(\dfrac{2024}{2023}>1>\dfrac{2022}{2025}\)

-------------------------

- Cả 3 câu mình đều dùng so sánh qua trung gian nhé, nghĩa là bạn lấy một số / phân số làm trung gian, nó bé hơn số này và lớn hơn số còn lại và nhiệm vụ là phải chứng minh được như thế

Lưu ý: Phân số cùng từ thì phân số nào có mẫu bé hơn thì nó lớn hơn và ngược lại. Phân số cùng mẫu thì tử nào bé hơn thì phân số đó bé hơn và ngược lại

25 tháng 7

cảm ơn 

 

7 tháng 10 2021

a) 2021 + 2022 + 2023 + 2024 + 2025 + 2026 + 2027 + 2028 + 2029

= (2021 + 2029) + (2022 + 2028) + (2023 + 2027) + (2024 + 2026) + 2025

= 4050 + 4050 + 4050 + 4050 + 2025

= 4050.4 + 2025

= 16 200 + 2025 

= 18 225

7 tháng 10 2021

b)

30.40.50.60 = 3.10.4.10.5.10.6.10 = 3.4.5.6.10000 = 3.20.6.10000 = 3.2.6.10.10000 = 36.100000 = 3600000

1 tháng 11

A = \(\dfrac{1}{2021.2022}\) + \(\dfrac{1}{2022.2023}\) + \(\dfrac{1}{2023.2024}\) + \(\dfrac{1}{2024.2025}\) - \(\dfrac{4}{2021.2025}\)

A = \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\) + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\) + \(\dfrac{1}{2023}\) - \(\dfrac{1}{2024}\) + \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\) - \(\dfrac{1}{2021}\) + \(\dfrac{1}{2025}\)

A = (\(\dfrac{1}{2021}\) - \(\dfrac{1}{2021}\))  + (\(\dfrac{1}{2022}\) - \(\dfrac{1}{2022}\)) + (\(\dfrac{1}{2023}\) - \(\dfrac{1}{2023}\)) + (\(\dfrac{1}{2024}\) - \(\dfrac{1}{2024}\)) + (\(\dfrac{1}{2025}\) - \(\dfrac{1}{2025}\))

A = 0 + 0  +0  + 0+ ... + 0

A = 0

27 tháng 8 2023

Ta có: 
Mẫu số chung 2 phân số: 84
\(\dfrac{3}{7}=\dfrac{3*12}{7*12}=\dfrac{36}{84}\)
\(\dfrac{5}{12}=\dfrac{5*7}{12*7}=\dfrac{35}{84}\)
Vì \(36>35\) nên\(\dfrac{36}{84}>\dfrac{35}{84}\)
Vậy \(\dfrac{3}{7}>\dfrac{5}{12}\)

Ta có:

\(\dfrac{9}{8}>1>\dfrac{2023}{2024}\) nên \(\dfrac{9}{8}>\dfrac{2023}{2024}\)

Ta có:

\(\dfrac{1+15}{16}=1\)

\(\dfrac{1+16}{15}=\dfrac{17}{15}>1\)

\(\Rightarrow\dfrac{1+15}{16}>\dfrac{1+16}{15}\)

27 tháng 8 2023

3/7 < 5/12

17 tháng 6 2023

\(A=2023\times2024\\ =\left(2022+1\right)\times2024\\ =2022\times2024+2024\\ B=2022\times2025\\ =2022\times\left(2024+1\right)\\ =2022\times2024+2022\)

Vì 2022 x 2024 = 2022 x 2024

=> 2024 > 2022

=> A> B

Cách 2

A= 2023 x 2024 = 4094552

 B = 2022 x 2025 =4094550

Vì 4094552 > 4094550 = > A> B

 

26 tháng 11 2023

a:

Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)

Từ 1 đến 2025 sẽ có:

\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)

Ta có: 1-3=5-7=...=2021-2023=-2

=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này

=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)

b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)

Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)

Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4

=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này

=>\(S=506\cdot\left(-4\right)=-2024\)

12 tháng 6 2023

giúp em với

25 tháng 12 2023

Giúp mình vs ạ

26 tháng 12 2023

A = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + 9 - 10 - 11 + ... - 2023 + 2024 + 2025

Xét dãy số: 1; 2; 3; 4;..; 2025 là dãy số cách đều với khoảng cách là:

                   2  - 1  = 1

Số số hạng của dãy số trên là: ( 2025 - 1) : 1  + 1 = 2025

                  Vì 2025 : 4 = 506 dư 1 

Nhóm 4 số hạng liên tiếp của A vào nhau thì được A là tổng của 506 nhóm và 2025 khi đó

A =(1-2-3+4)+(5 - 6 - 7 + 8) +...+(2021-2022-2023+2024) + 2025

A = 0 + 0 +...+ 0 + 2025

A = 2025

           

 

          

 

4 tháng 8 2023

a, \(\dfrac{515}{605}\) < \(\dfrac{515+1}{605+1}\) = \(\dfrac{516}{606}\) vậy \(\dfrac{515}{605}< \dfrac{516}{606}\)

b, - \(\dfrac{2}{3}\) và \(\dfrac{3}{-2}\)  Vì   - \(\dfrac{2}{3}\) > -1;     \(\dfrac{3}{-2}\) < - 1  Vậy - \(\dfrac{2}{3}\) >  \(\dfrac{3}{-2}\)

c, - \(\dfrac{17}{16}\) và \(\dfrac{30}{7}\) vì - \(\dfrac{17}{16}\) < 0 <  \(\dfrac{30}{7}\)  nên - \(\dfrac{17}{16}\) < \(\dfrac{30}{7}\)

d, - \(\dfrac{16}{279}\) và  - \(\dfrac{16}{217}\) vì \(\dfrac{16}{279}\) < \(\dfrac{16}{217}\) nên - \(\dfrac{16}{279}\) > - \(\dfrac{16}{217}\) 

 

 

 

4 tháng 8 2023

Để so sánh các số hữu tỉ, chúng ta có thể chuyển về cùng một mẫu số và so sánh tử số.

So sánh 515/605 và 516/606:
Để chuyển về cùng mẫu số, ta nhân cả tử và mẫu của cả hai phân số với 1001 (là tích của 11 và 91).
515/605 = (515 * 1001) / (605 * 1001) = 515515 / 605605
516/606 = (516 * 1001) / (606 * 1001) = 516516 / 606606

Vì 515515 < 516516, và 605605 < 606606, nên ta có: 515/605 < 516/606.

So sánh -2/3 và 3/-2:
Để chuyển về cùng mẫu số, ta nhân cả tử và mẫu của cả hai phân số với -1.
-2/3 = (-2 * -1) / (3 * -1) = 2 / -3
3/-2 = (3 * -1) / (-2 * -1) = -3 / 2

Vì 2 > -3, và -3 < 2, nên ta có: -2/3 > 3/-2.

So sánh -17/16 và 30/7:
Để chuyển về cùng mẫu số, ta nhân cả tử và mẫu của cả hai phân số với 112 (là tích của 16 và 7).
-17/16 = (-17 * 112) / (16 * 112) = -1904 / 1792
30/7 = (30 * 112) / (7 * 112) = 3360 / 784

Vì -1904 < 3360, và 1792 > 784, nên ta có: -17/16 < 30/7.

So sánh -16/279 và -16/217:
Để chuyển về cùng mẫu số, ta không cần thay đổi gì vì cả hai phân số đã có cùng mẫu số.
-16/279 và -16/217 có cùng tử số và mẫu số, nên chúng bằng nhau: -16/279 = -16/217.

Tóm lại:

515/605 < 516/606
-2/3 > 3/-2
-17/16 < 30/7
-16/279 = -16/217

11 tháng 4 2023

1.     Giải:

Do \(5x+13B\in\left(2x+1\right)\Rightarrow5x+13⋮2x+1.\)

 

 \(\Rightarrow2\left(5x+13\right)⋮2x+1\Rightarrow10x+26⋮2x+1.\)

 \(\Rightarrow5\left(2x+1\right)+21⋮2x+1.\)

Do 5(2x+1)⋮2x+1⇒ Ta cần 21⋮2x+1.

⇒ 2x+1 ϵ B(21)=\(\left\{1;3;7;21\right\}.\)

Ta có bảng:

   2x+1        1       3       7      21
       x        0       1       3      10
        TM      TM      TM      TM

Vậy xϵ\(\left\{0;1;3;10\right\}.\)

2. Giải:

Do (2x-18).(3x+12)=0.

⇒ 2x-18=0             hoặc             3x+12=0.

⇒ 2x     =18                               3x       =-12.

⇒   x     =9                                   x       =-4.

Vậy xϵ\(\left\{-4;9\right\}.\)

3. S= 1-2-3+4+5-6-7+8+...+2021-2022-2023+2024+2025.

S= (1-2-3+4)+(5-6-7+8)+...+(2021-2022-2023+2024)+2025 Có 506 cặp.

S= 0 + 0 + ... + 0 + 2025.

⇒S= 2025.

 

13 tháng 2 2023

\(A=\dfrac{2024^{2023}+1}{2024^{2024}+1}\)

\(2024A=\dfrac{2024^{2024}+2024}{2024^{2024}+1}=\dfrac{\left(2024^{2024}+1\right)+2023}{2024^{2024}+1}=\dfrac{2024^{2024}+1}{2024^{2024}+1}+\dfrac{2023}{2024^{2024}+1}=1+\dfrac{2023}{2024^{2024}+1}\)

\(B=\dfrac{2024^{2022}+1}{2024^{2023}+1}\)

\(2024B=\dfrac{2024^{2023}+2024}{2024^{2023}+1}=\dfrac{\left(2024^{2023}+1\right)+2023}{2024^{2023}+1}=\dfrac{2024^{2023}+1}{2024^{2023}+1}+\dfrac{2023}{2024^{2023}+1}=1+\dfrac{2023}{2024^{2023}+1}\)

Vì \(2024>2023=>2024^{2024}>2024^{2023}\)

\(=>2024^{2024}+1>2024^{2023}+1\)

\(=>\dfrac{2023}{2024^{2023}+1}>\dfrac{2023}{2024^{2024}+1}\)

\(=>A< B\)

 

\(#PaooNqoccc\)

13 tháng 2 2023

dễ